
Time-based Compression of SZ and Evaluation

SZ development team
Argonne National Laboratory

June 30th, 2018

Section 1. ECP Milestone Targets

This milestone targets the addition in SZ of the capability to compress datasets in time

dimension.

Milestone Execution Plan:

• Explore techniques for compression in time dimension

• Integration of compression in time dimension

• Test and performance evaluation on available CORAL systems

Section 2. Design and Implementation

Development of time-based compression for both compression and decompression has
been successfully accomplished and integrated in SZ 1.4.13.

Task 1: Explore techniques for compression in time dimension

During the past three months (April ~ June, 2018), we explored how to design and implement

the time-based compression based on SZ compression framework.

The traditional SZ compression framework includes three critical steps: (1) data prediction for

each data point based on its neighbors, (2) linear-scaling quantization in order to converting all

the floating-point values to integer coding numbers, (3) Entropy-encoding (a customized

Huffman encoding algorithm) for significantly reducing the data size.

The new SZ compression framework designed in the past three months mainly improved the

step 1 in the traditional SZ framework, while the other two steps are unchanged. Specifically, in

addition to the space-based data prediction regarding only the current time step, SZ now

supports time-based data prediction that involves a few previous time steps at runtime during

the simulation. This creates a new avenue/chance to take advantage of the smoothness of the

data along the time dimension, such that the data prediction accuracy could be further

improved, leading to higher overall compression ratio. Such a new compression framework also

allows compression developers to study how to combine space-based prediction and

time-based compression together in the future.

Task 2: Integration of compression in time dimension
In order to allow users to decompress the data efficiently, the new SZ compression
framework needs to use space-based compression and time-based compression
alternatively. In fact, if the compressor adopts only time-based compression, all the
snapshots will depend on the very first snapshot. In this situation, if the user wants to
decompress the last snapshot (say, time step 1000), it is still necessary to decompress all
the snapshots including the time step 1, because of the dependency in time-based
prediction. Hence, we need to call space-based compression periodically (e.g., every k
time steps) and the rest time steps will use time-based compression strategy. When
decompressing the data, the compressor just needs to decompress a few proceeding
steps before the target time step, suffering very limited decompression time.

We have integrated the time-based compression into the SZ release 1.4.13.5. How to
switch on this option and use the API is described in Section 4.

Task 3: Testing and performance evaluation on available CORAL system.
We wrote a couple of examples and scripts to simulate the in-situ data
compression/decompression in each data-dumping iteration. Specifically, all the fields that
need to be compressed/dumped need to be registered at the beginning (before the key
iteration loop). Then, “SZ_compress_ts(&bytes, &outSize)” will be called in each iteration
that needs to dump the executed/simulated data. The variable “bytes” refers to the output
compressed bytes and the “outsize” is the size of the compressed data (in bytes). Since
the fields to compress are registered at the beginning, users don’t need to pass their
pointers again inside the key loop of iterations.

We tested the time-based compression vs. space-based compression in SZ on Theta
system at Argonne. The entire Theta system has 24 racks, 4,392 nodes with a total of
281,088 cores. 70.272 TB MCDRAM, 843.264 TB DDR4, 562.176 TB SSD, Aries
interconnect with Dragonfly configuration, 10 PB Lustre file system, Peak performance of
11.69 petaflops.

The evaluation metrics include rate-distortion, compression ratio, compression rate and
decompression rate. Compression ratio is defined as the ratio of the original data size to
the compressed data size. Rate-distortion is a figure showing the relationship between the
data distortion (evaluated by PSNR) vs. the bit-rate (i.e., the number of bits used to
represent one data point on average). In the following, we present the results based on
the datasets of three typical fields in the Isabel-hurricane simulation. We compare the
results between the snapshot-based compression vs. time-based compression.

Experimental results indicate that neither of the two strategies may always get the better
result than the other, depending on the dataset. This observation motivates us to explore
a combination of the two strategies in order to optimize the compression quality at
runtime.

We present the compression ratios in Figure 1. We can clearly observe that the
snapshot-based compression has much higher compression ratio than the time-based
compression on the Uf field, while it suffers from much lower compression ratio on the
QCloudf field. On the Cloudf field, the two strategies lead to similar compression ratios.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0.001 0.0001 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

Error Bounds

Snapshot
Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

1e-03 1e-04 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

Error Bounds

Snapshot
Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.001 0.0001 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

Error Bounds

Snapshot
Time

(a) Uf (b) Cloudf (c) QCloudf

Figure 1. Compression Ratio of Snapshot-based compression vs. Time-based Compression

We present the rate-distortion in Figure 2, which also demonstrates that these two
strategies are suitable for different fields in particular. For instance, the snapshot-based
compression exhibits much better rate-distortion result than the time-based compression,
probably because the data exhibit higher smoothness in space than in time-dimension on
this field. For the QCloudf field, the time-based compression has better rate-distortion
than the snapshot-based compression, because the data of this field is much smoother in
the time dimension than in the space.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 1

P
S
N
R

Bit-Rate

snapshot
time

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2 2.5 3

P
S
N
R

Bit-Rate

snapshot
time

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
S
N
R

Bit-Rate

snapshot
time

(a) Uf (b) Cloudf (c) QCloudf

Figure 2. Rate-distortion of Snapshot-based compression vs. Time-based Compression

We present the single-core compression rate and single-core decompression rate in
Figure 3 and Figure 4, respectively. It is observed that each of the two different strategies
exhibits different processing rates compared to the other one, depending on the datasets.
Specifically, the time-based compression works faster than the snapshot-based
compression on QCloudf by up to 50% on the decompression and by 20% on the
compression.

 0
 10
 20
 30
 40

 50
 60
 70
 80
 90

 100

0.001 0.0001 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

 0

 20

 40

 60

 80

 100

 120

1e-03 1e-04 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

 0

 20

 40

 60

 80

 100

 120

 140

0.001 0.0001 1e-05 1e-06

C
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

(a) Uf (b) Cloudf (c) QCloudf

Figure 3. Compression Rate of Snapshot-based compression vs. Time-based Compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.001 0.0001 1e-05 1e-06D
e
c
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1e-03 1e-04 1e-05 1e-06D
e
c
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

 0

 50

 100

 150

 200

 250

 300

0.001 0.0001 1e-05 1e-06D
e
c
o
m
p
r
e
s
s
i
o
n

R
a
t
e

(
M
B
/
S
)

Error Bounds

Snapshot
Time

(a) Uf (b) Cloudf (c) QCloudf
Figure 4. Decompression Rate of Snapshot-based compression vs. Time-based Compression

Section 4. Installation and Test

Installation:

./configure --prefix=[Your installation path] --enable-timecmpr
make && make install

Test:

You will find testfloat_compress_ts.c and testfloat_decompress_ts.c in the example/
directory.

You can download the testing data from here:
http://www.mcs.anl.gov/~shdi/download/consecutive-steps.tar.gz

You can set control the frequency of the snapshot-based compression vs. time-based
compression in sz.config. For instance, snapshotCmprStep = 5 means during the
simulation, there will be one snapshot-based compression (i.e., individual data
compression without dependency to previous time steps) every 5 time steps, and the rest
time steps would adopt the time-based compression (i.e., data compression using
previous time-step information).

For example, in the datasets you downloaded, you will find there are 20 snapshots. If
snapshotCmprStep = 5, then the entire compression will be like this:
step 1: standalone snapshot compression (spatial compression)
step 2: time-step based compression in terms of step 1
step 3: time-step based compression in terms of step 2
step 4: time-step based compression in terms of step 3
step 5: time-step based compression in terms of step 4
step 6: standalone snapshot compression (spatial compression)
step 7: time-step based compression in terms of step 6
step 8: time-step based compression in terms of step 7
step 9: time-step based compression in terms of step 8
step 10: time-step based compression in terms of step 9
step 11: standalone snapshot compression (spatial compression)

We listed two future works to do.
1. Study how to combine the snapshot-based compression and time-based compression.

Note that the combination of the two strategies is not simply determining which one to
use according to the data features, but also developing a new prediction formula
combining them together.

2. Optimization of the moments/frequencies of selecting the two strategies alternatively

