
Presented by:

Ramon Aranda, Francisco Hernandez-Lopez, Francisco Madrigal,

{arac, fcoj23, pacomd}@cimat.mx

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2014

 OpenCV & Cuda (Brief Introduction)…………….. (15 min)

 Image processing in OpenCV …………………….. (7.5 min)

 Memory allocation in the GPU……………………. (7.5 min)

 Memory passing between OpenCV and CUDA…….. (10 min)

 Operation on parallel (GPU management) ………….(5 min)

 Operations on GPU: First Examples
 Addition of Vectors/Matrices…………………………….. (20 min)

 Considerations …………………………………………...(10 min)

2October 2014OpenCV & CUDA.

 Parallel Image processing
 Compose images ...(20 min)

 Gradient magnitude…………………………………………(20 min)

 Image filtering………………………………………………(35 min)

 Corner detector…………………………………………… (20 min)

 Diffusion image……………………………………………..(25 min)

 Native Functions of OpenCV that use CUDA: gpu::mat..(15min)

 Parallel Image processing using multiple GPUs: Examples(20min)

 Conclusions: Potential applications……………………(10 min)

3October 2014OpenCV & CUDA.

MOTIVATION:

 Image filtering

 Stereo Matching

 Morphology

 HOG

 Segmentation

 Etc.

 All Highly Parallelizable

4October 2014OpenCV & CUDA.

MOTIVATION: OPENCV & CUDA
 You can solve problems:

 Finance

 Image processing and Video

 Linear Algebra, optimization problems

 Physics, Chemistry, Biology

 Etc.…

5

Medial Image ProccessingFinite element methods

Object detection

Protein Simulation October 2014OpenCV & CUDA.

MOTIVATION:
GPU (USING CUDA) VS MULTI-CORE CPU

6October 2014OpenCV & CUDA.

OpenCV & CUDA

 Library of algorithms released under BSD license.

 Interfaces with C++, C, Python and JAVA.

 Can be compiled on Windows, Linux, Android and Mac.

 Has more than 2500 optimized algorithms.

 Support by a big community of users and developers.

 Multiple uses like visual inspection, robotic, etc.

8October 2014OpenCV & CUDA.

 http://www.opencv.org/

 http://www.cmake.org/

9October 2014OpenCV & CUDA.

Source: www.itseez.com

10October 2014OpenCV & CUDA.

 Contrib: Miscellaneous contributions

 Legacy: Deprecated code

 Nonfree: Algorithms with copyright.

GPU: GPU functions (Can use with another CUDA libs)

11October 2014OpenCV & CUDA.

 Running more than one calculation at the same time or "in parallel", using more
than one processor.

12

OpenMP OpenMPI Cg,

CUDA,

OpenCL

October 2014OpenCV & CUDA.

 Flexible and powerful Processor

 Handles accuracy of (32/64)-bit in floating point

 Programmed using high level languages

 Offers lots of GFLOPS

13October 2014OpenCV & CUDA.

From CUDA_C_Programming_Guide.pdf

GeForce GTX 780 Ti

 Specialized for data parallel computing.

 Uses more transistors to data processing than flow control or data
storage.

14

From CUDA_C_Programming_Guide.pdf

Introduction:
GPU

October 2014OpenCV & CUDA.

 GPGPU technology (General-purpose computing on graphics processing units)
that lets you use the C programming language to execute code on the graphic
processing unit (GPU).

 Developed by NVIDIA.

 To use this architecture it is required to have a GeForce 8 series (or Quadro
equivalent), and more recently GPUs.

15October 2014OpenCV & CUDA.

 Supports the programming language C/C++, Fortran, Matlab, LabView, etc..

 Unification of hardware and software for parallel computing.

 Supports: Single Instruction, Multiple Data (SIMD).

 Libraries for FFT (Fast Fourier Transform), BLAS (Basic Linear Algebra
Subroutines), NPP,TRUSTH, CULA, etc.

 Works internally with OpenGL and DirectX.

 Supports operative systems:

 Windows, Linux and Mac OS.

16October 2014OpenCV & CUDA.

Architectures Capability

8-200 series 1.0 - 1.3

FERMI (400 series) 2.0 - 2.1

KEPLER (600 series) 3.0 - 3.5

17

See: http://www.nvidia.com/object/cuda_gpus.html

GPU Architectures and Capabilities

Next Architectures

(2014-2016)

Capability

MaxWell 5.0 - 5.2

Volta-Pascal --

October 2014OpenCV & CUDA.

 Installing CUDA (http://developer.nvidia.com/cuda/cuda-downloads)

18October 2014OpenCV & CUDA.

19October 2014OpenCV & CUDA.

 cv :: Mat

 Basic management of matrices

21October 2014OpenCV & CUDA.

 Class cv::Mat is
responsible for
managing the image

 OpenCV provides functions
for reading, showing and
saving of images.

22October 2014OpenCV & CUDA.

 Pixel access

 There are different ways to access the pixels within an instance of cv:: Mat. For
example, for grayscale images, we can use the member function “.at<type >”
(row,col)

 In the case of more than one channel

23October 2014OpenCV & CUDA.

24October 2014OpenCV & CUDA.

Allocate and free memory
 cudaMalloc ((void**) devPtr, size_t size)

 cudaFree (void *devPtr)

 Those are similar to:

 Malloc()..

 Free()..

26October 2014OpenCV & CUDA.

Copy memory.
 cudaMemcpy(void *dst, const void *src, size_t

count, enum cudaMemcpyKind kind)

 Kind:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

27October 2014OpenCV & CUDA.

See example in “MemoryManage.cpp”

 A program that is compiled to run on a
graphics card is called the Kernel

 The set of threads that execute a kernel is
organized as a grid of thread blocks

 A thread block is a set of threads that can
cooperate together:

 Easy access to shared memory

 Synchronously

 With a thread identifier ID

 Blocks can be arranged for 1, 2 or 3
dimensions

 A grid of thread blocks:

 It has a limited number of threads in a block

 The blocks are identified by an ID

 Arrangements can be of 1 or 2 dimensions

30October 2014OpenCV & CUDA.

 Running on the Host and Device

31

Host = CPU

Device = GPU

Kernel = Set of

instructions than

runs in the device

October 2014OpenCV & CUDA.

__device__
 Runs on the device.

 Called only from the device.

__global__
 Runs on the device

 Called only from the host.

32October 2014OpenCV & CUDA.

 __device__
 Resides in global memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host
through the library at runtime.

 Others:

 __constant__ (Optionally used with __device__)

 Resides in constant memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host through the library at
runtime.

 __shared__ (Optionally used with __device__)

 Lives in shared memory space of a thread block.

 Has the lifetime of a block.

 Only accessible from the threads that are within the block.

33October 2014OpenCV & CUDA.

 Example function

 Kernel in the Device:

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3,dimension and size of each block.

 Ns: Type size_t, number of bytes in shared memory.

 St: Type cudaStream_t that indicates which stream will use the
kernel.

(Ns and St are optional).

34October 2014OpenCV & CUDA.

 All __global__ and __device__ functions have access to the following variables:

 gridDim (dim3), indicates the dimension of the grid.

 blockIdx (uint3), indicates the index of the bloque within the grid.

 blockDim (dim3), indicates the dimension of the block.

 threadIdx (uint3), indicates the index of the thread within the block.

35October 2014OpenCV & CUDA.

37

CPU C

void add_one_cpu(float *vector, int N)

{

int i;

for (i=0;i<N;i++) {

vector [j]+=1.0f;

}

}

void main() {

.....

add_one_cpu (a,N);

}

CUDA C

__global__ void add_one_gpu(float *d_vector, int N)

{

int i=blockIdx.x*blockDim.x+threadIdx.x;

if(i <N)

d_vector[i] += 1.0f;

}

void main() {

dim3 dimBlock(blocksize, 1, 1);

dim3 dimGrid(N/dimBlock.x, 1,1);

add_matrix_gpu<<<dimGrid, dimBlock>>>(a, N);

}

October 2014OpenCV & CUDA.

 Every element in the vector is processing by every thread in
each block

38October 2014OpenCV & CUDA.

 Add two vectors

 Create host memory: “a_h”, “b_h” and “c_h”

 Initialize the vectors “a_h” and “b_h”.

 Create device memory: “a_d”, “b_d” and “c_d”.

 Copy memory from host to device of vectors a and b.

 Add vectors a_d and b_d; the result is saved in vector c_d.

 Copy memory from device to host of vector c.

 Finally, show the result.

 See “add_vectors.cpp”

39October 2014OpenCV & CUDA.

 Exercise: The code in “add_matrices.cpp” is incomplete; find
and correct the mistake.

 Remember:

 Create host memory: “a_h”, “b_h” and “c_h”.

 Initialize “a_h” and “b_h”.

 Crete device memory: “a_d”, “b_d” y “c_d”.

 Copy memory from host to device.

 Add matrix in the device.

 Copy memory from device to host.

 Finally, show the result.

40October 2014OpenCV & CUDA.

41

1,1 1,2

2,1 2,2

1,3

2,3

3,1 3,2 3,3

Indexes in Matrix form Indexes in Vector form

1 2

4 5

3

6

7 8 9

The formula in C/C++ is

Index_vector = i * #cols + j

1 2

4 5

3

6

7 8 9

1 2 3 4 5 6 7 8 9

October 2014OpenCV & CUDA.

 There are some technique to improve the performance of
algorithms on GPU.

 Multiple Data, Single Instruction:

 32 threads (warp)

 Avoid use “if”.

 Also, avoid “for” with different stop criteria in each thread

42

if()  only 2
thread

….

else  30 trheads

…

This takes 2 times!

October 2014OpenCV & CUDA.

 Load two images and reserve memory to the output image.

 Create memory on Device (for the 3 images).

 Copy memory of the Host to Device.

 Loop:

 Kernel (CUDA_Compose_Images)

 Return the result on the Host

 Show the result

 Free the memory

44October 2014OpenCV & CUDA.

 Load the original image in host memory.

 Create device memory: Imag_dev, ImagDx_dev, ImagDy_dev,
ImagMG_dev.

 Copy the original image from host to device memory.

 Calculate Dx, Dy and GM in the device.

 Copy the result from device to host memory.

 Show the result.

45

𝐷𝑥 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥 − 1, 𝑦

𝐷𝑦 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥, 𝑦 − 1

𝐺𝑀 𝑥, 𝑦 = 𝐷𝑥
2 𝑥, 𝑦 + 𝐷𝑦

2(𝑥, 𝑦)

October 2014OpenCV & CUDA.

 Example: Mean filter

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the mean filter.

 Copy the result from device to host memory.

 Show the result.

46October 2014OpenCV & CUDA.

 Mean filter with window size of 3x3:

47

Image
Convolution

Kernel

* =

1 1 1
1 1 1
1 1 1

October 2014OpenCV & CUDA.

 Exercises: Gaussian and Laplacian filters

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the Gaussian or Laplacian filter.

 Copy the result from device to host memory.

 Show the result

48

Gaussian Filter: Laplacian Filter:

1 2 1
2 4 2
1 2 1

0 1 0
1 −4 1
0 1 0

October 2014OpenCV & CUDA.

 Exercise: Corner detector with the structure tensor

49

𝐷𝑥
2 𝐷𝑥𝐷𝑦

𝐷𝑥𝐷𝑦 𝐷𝑦
2

October 2014OpenCV & CUDA.

 Given an image g(x) with noise.

 Smooth the image g(x) with the following functional:

 Differentiating and equating to zero, we obtain:

 We can solve by:

 Jacobi

 Gauss-Seidel

50

𝑈 𝑓 𝑥 =
1

2

𝑥

𝑓 𝑥 − 𝑔 𝑥 2 +
𝜆

2

<𝑥,𝑦>

𝑓 𝑥 − 𝑓 𝑦 2

𝑓𝑘+1 𝑥 =
𝑔 𝑥 + 𝜆 𝑦∈𝑁𝑥 𝑓

𝑘(𝑦)

1 + 𝜆|𝑁𝑥|
|𝑁𝑥| = # neighborhoods

of pixel x

𝑓0 𝑥 = 𝑔(𝑥)

October 2014OpenCV & CUDA.

51October 2014OpenCV & CUDA.

 GPUs can be controlled by:

 A single CPU thread

 Multiple CPU threads

52October 2014OpenCV & CUDA.

 Asynchronous calls (kernels, memcopies) don’t block
switching the GPU.

 The following code will have both GPUs executing
concurrently:

 cudaSetDevice(0);

 kernel<<<...>>>(...);

 cudaSetDevice(1);

 kernel<<<...>>>(...);

53October 2014OpenCV & CUDA.

 Using multiple GPUs with “OpenMP”

54October 2014OpenCV & CUDA.

• Key ideas

 Explicit control of data transfers between CPU and GPU

 Minimization of the data transfers

 Completeness

 Port everything even functions with little speed-up

 Solution

 Container for GPU memory with upload/download functionality

 GPU module function take the container as input/output parameters

55October 2014OpenCV & CUDA.

 Class GpuMat –for storing 2D (pitched) data on GPU

 Interface similar to cv::Mat(), supports reference counting

 Its data is not continuous, extra padding in the end of each row

 It contains:

 data - Pointer data beginning in GPU memory

 step – Distance in bytes is between two consecutive rows

 cols, rows - Fields that contain image size

 upload/download – Up/down memory from device

56October 2014OpenCV & CUDA.

Mat frame;

VideoCapture capture(camera);

cv::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor
::

getDefaultPeopleDetectorector());

capture >> frame;

vector<Rect> found;

hog.detectMultiScale(frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

57

Designed very similar!

Mat frame;

VideoCapture capture(camera);
cv::gpu::HOGDescriptor hog;
hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;

gpu_frame.upload(frame);

vector<Rect> found;
hog.detectMultiScale(gpu_frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

October 2014OpenCV & CUDA.

 CPU

 Incremental improvements (memory caches and complex
architectures)

 Few Multi-core (4/8/16)

 GPU

 Highly parallel with 100s of simple cores

 Easier to extend by adding more GPUs

 Continue to grow exponentially!

 Most of the GPUs are cheap!

58October 2014OpenCV & CUDA.

 We presented a small introduction of the parallel processing
using GPUs.

 There are many sofistecated strategies for make up your GPU-
code faster.

 Most problems can be parallelized and are suitable to be run
on GPUs

 One has to consider the properties of the GPU (shared memory,
cache, compute capability) when designing the kernels

59October 2014OpenCV & CUDA.

60October 2014OpenCV & CUDA.

61October 2014OpenCV & CUDA.

62October 2014OpenCV & CUDA.

63

Tract Estimations from the callosum corpus

October 2014OpenCV & CUDA.

64October 2014OpenCV & CUDA.

65October 2014OpenCV & CUDA.

