
Presented by:

Ramon Aranda, Francisco Hernandez-Lopez, Francisco Madrigal,

{arac, fcoj23, pacomd}@cimat.mx

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2014

 OpenCV & Cuda (Brief Introduction)…………….. (15 min)

 Image processing in OpenCV …………………….. (7.5 min)

 Memory allocation in the GPU……………………. (7.5 min)

 Memory passing between OpenCV and CUDA…….. (10 min)

 Operation on parallel (GPU management) ………….(5 min)

 Operations on GPU: First Examples
 Addition of Vectors/Matrices…………………………….. (20 min)

 Considerations …………………………………………...(10 min)

2October 2014OpenCV & CUDA.

 Parallel Image processing
 Compose images ...(20 min)

 Gradient magnitude…………………………………………(20 min)

 Image filtering………………………………………………(35 min)

 Corner detector…………………………………………… (20 min)

 Diffusion image……………………………………………..(25 min)

 Native Functions of OpenCV that use CUDA: gpu::mat..(15min)

 Parallel Image processing using multiple GPUs: Examples(20min)

 Conclusions: Potential applications……………………(10 min)

3October 2014OpenCV & CUDA.

MOTIVATION:

 Image filtering

 Stereo Matching

 Morphology

 HOG

 Segmentation

 Etc.

 All Highly Parallelizable

4October 2014OpenCV & CUDA.

MOTIVATION: OPENCV & CUDA
 You can solve problems:

 Finance

 Image processing and Video

 Linear Algebra, optimization problems

 Physics, Chemistry, Biology

 Etc.…

5

Medial Image ProccessingFinite element methods

Object detection

Protein Simulation October 2014OpenCV & CUDA.

MOTIVATION:
GPU (USING CUDA) VS MULTI-CORE CPU

6October 2014OpenCV & CUDA.

OpenCV & CUDA

 Library of algorithms released under BSD license.

 Interfaces with C++, C, Python and JAVA.

 Can be compiled on Windows, Linux, Android and Mac.

 Has more than 2500 optimized algorithms.

 Support by a big community of users and developers.

 Multiple uses like visual inspection, robotic, etc.

8October 2014OpenCV & CUDA.

 http://www.opencv.org/

 http://www.cmake.org/

9October 2014OpenCV & CUDA.

Source: www.itseez.com

10October 2014OpenCV & CUDA.

 Contrib: Miscellaneous contributions

 Legacy: Deprecated code

 Nonfree: Algorithms with copyright.

GPU: GPU functions (Can use with another CUDA libs)

11October 2014OpenCV & CUDA.

 Running more than one calculation at the same time or "in parallel", using more
than one processor.

12

OpenMP OpenMPI Cg,

CUDA,

OpenCL

October 2014OpenCV & CUDA.

 Flexible and powerful Processor

 Handles accuracy of (32/64)-bit in floating point

 Programmed using high level languages

 Offers lots of GFLOPS

13October 2014OpenCV & CUDA.

From CUDA_C_Programming_Guide.pdf

GeForce GTX 780 Ti

 Specialized for data parallel computing.

 Uses more transistors to data processing than flow control or data
storage.

14

From CUDA_C_Programming_Guide.pdf

Introduction:
GPU

October 2014OpenCV & CUDA.

 GPGPU technology (General-purpose computing on graphics processing units)
that lets you use the C programming language to execute code on the graphic
processing unit (GPU).

 Developed by NVIDIA.

 To use this architecture it is required to have a GeForce 8 series (or Quadro
equivalent), and more recently GPUs.

15October 2014OpenCV & CUDA.

 Supports the programming language C/C++, Fortran, Matlab, LabView, etc..

 Unification of hardware and software for parallel computing.

 Supports: Single Instruction, Multiple Data (SIMD).

 Libraries for FFT (Fast Fourier Transform), BLAS (Basic Linear Algebra
Subroutines), NPP,TRUSTH, CULA, etc.

 Works internally with OpenGL and DirectX.

 Supports operative systems:

 Windows, Linux and Mac OS.

16October 2014OpenCV & CUDA.

Architectures Capability

8-200 series 1.0 - 1.3

FERMI (400 series) 2.0 - 2.1

KEPLER (600 series) 3.0 - 3.5

17

See: http://www.nvidia.com/object/cuda_gpus.html

GPU Architectures and Capabilities

Next Architectures

(2014-2016)

Capability

MaxWell 5.0 - 5.2

Volta-Pascal --

October 2014OpenCV & CUDA.

 Installing CUDA (http://developer.nvidia.com/cuda/cuda-downloads)

18October 2014OpenCV & CUDA.

19October 2014OpenCV & CUDA.

 cv :: Mat

 Basic management of matrices

21October 2014OpenCV & CUDA.

 Class cv::Mat is
responsible for
managing the image

 OpenCV provides functions
for reading, showing and
saving of images.

22October 2014OpenCV & CUDA.

 Pixel access

 There are different ways to access the pixels within an instance of cv:: Mat. For
example, for grayscale images, we can use the member function “.at<type >”
(row,col)

 In the case of more than one channel

23October 2014OpenCV & CUDA.

24October 2014OpenCV & CUDA.

Allocate and free memory
 cudaMalloc ((void**) devPtr, size_t size)

 cudaFree (void *devPtr)

 Those are similar to:

 Malloc()..

 Free()..

26October 2014OpenCV & CUDA.

Copy memory.
 cudaMemcpy(void *dst, const void *src, size_t

count, enum cudaMemcpyKind kind)

 Kind:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

27October 2014OpenCV & CUDA.

See example in “MemoryManage.cpp”

 A program that is compiled to run on a
graphics card is called the Kernel

 The set of threads that execute a kernel is
organized as a grid of thread blocks

 A thread block is a set of threads that can
cooperate together:

 Easy access to shared memory

 Synchronously

 With a thread identifier ID

 Blocks can be arranged for 1, 2 or 3
dimensions

 A grid of thread blocks:

 It has a limited number of threads in a block

 The blocks are identified by an ID

 Arrangements can be of 1 or 2 dimensions

30October 2014OpenCV & CUDA.

 Running on the Host and Device

31

Host = CPU

Device = GPU

Kernel = Set of

instructions than

runs in the device

October 2014OpenCV & CUDA.

__device__
 Runs on the device.

 Called only from the device.

__global__
 Runs on the device

 Called only from the host.

32October 2014OpenCV & CUDA.

 __device__
 Resides in global memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host
through the library at runtime.

 Others:

 __constant__ (Optionally used with __device__)

 Resides in constant memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host through the library at
runtime.

 __shared__ (Optionally used with __device__)

 Lives in shared memory space of a thread block.

 Has the lifetime of a block.

 Only accessible from the threads that are within the block.

33October 2014OpenCV & CUDA.

 Example function

 Kernel in the Device:

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3,dimension and size of each block.

 Ns: Type size_t, number of bytes in shared memory.

 St: Type cudaStream_t that indicates which stream will use the
kernel.

(Ns and St are optional).

34October 2014OpenCV & CUDA.

 All __global__ and __device__ functions have access to the following variables:

 gridDim (dim3), indicates the dimension of the grid.

 blockIdx (uint3), indicates the index of the bloque within the grid.

 blockDim (dim3), indicates the dimension of the block.

 threadIdx (uint3), indicates the index of the thread within the block.

35October 2014OpenCV & CUDA.

37

CPU C

void add_one_cpu(float *vector, int N)

{

int i;

for (i=0;i<N;i++) {

vector [j]+=1.0f;

}

}

void main() {

.....

add_one_cpu (a,N);

}

CUDA C

__global__ void add_one_gpu(float *d_vector, int N)

{

int i=blockIdx.x*blockDim.x+threadIdx.x;

if(i <N)

d_vector[i] += 1.0f;

}

void main() {

dim3 dimBlock(blocksize, 1, 1);

dim3 dimGrid(N/dimBlock.x, 1,1);

add_matrix_gpu<<<dimGrid, dimBlock>>>(a, N);

}

October 2014OpenCV & CUDA.

 Every element in the vector is processing by every thread in
each block

38October 2014OpenCV & CUDA.

 Add two vectors

 Create host memory: “a_h”, “b_h” and “c_h”

 Initialize the vectors “a_h” and “b_h”.

 Create device memory: “a_d”, “b_d” and “c_d”.

 Copy memory from host to device of vectors a and b.

 Add vectors a_d and b_d; the result is saved in vector c_d.

 Copy memory from device to host of vector c.

 Finally, show the result.

 See “add_vectors.cpp”

39October 2014OpenCV & CUDA.

 Exercise: The code in “add_matrices.cpp” is incomplete; find
and correct the mistake.

 Remember:

 Create host memory: “a_h”, “b_h” and “c_h”.

 Initialize “a_h” and “b_h”.

 Crete device memory: “a_d”, “b_d” y “c_d”.

 Copy memory from host to device.

 Add matrix in the device.

 Copy memory from device to host.

 Finally, show the result.

40October 2014OpenCV & CUDA.

41

1,1 1,2

2,1 2,2

1,3

2,3

3,1 3,2 3,3

Indexes in Matrix form Indexes in Vector form

1 2

4 5

3

6

7 8 9

The formula in C/C++ is

Index_vector = i * #cols + j

1 2

4 5

3

6

7 8 9

1 2 3 4 5 6 7 8 9

October 2014OpenCV & CUDA.

 There are some technique to improve the performance of
algorithms on GPU.

 Multiple Data, Single Instruction:

 32 threads (warp)

 Avoid use “if”.

 Also, avoid “for” with different stop criteria in each thread

42

if() only 2
thread

….

else 30 trheads

…

This takes 2 times!

October 2014OpenCV & CUDA.

 Load two images and reserve memory to the output image.

 Create memory on Device (for the 3 images).

 Copy memory of the Host to Device.

 Loop:

 Kernel (CUDA_Compose_Images)

 Return the result on the Host

 Show the result

 Free the memory

44October 2014OpenCV & CUDA.

 Load the original image in host memory.

 Create device memory: Imag_dev, ImagDx_dev, ImagDy_dev,
ImagMG_dev.

 Copy the original image from host to device memory.

 Calculate Dx, Dy and GM in the device.

 Copy the result from device to host memory.

 Show the result.

45

𝐷𝑥 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥 − 1, 𝑦

𝐷𝑦 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥, 𝑦 − 1

𝐺𝑀 𝑥, 𝑦 = 𝐷𝑥
2 𝑥, 𝑦 + 𝐷𝑦

2(𝑥, 𝑦)

October 2014OpenCV & CUDA.

 Example: Mean filter

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the mean filter.

 Copy the result from device to host memory.

 Show the result.

46October 2014OpenCV & CUDA.

 Mean filter with window size of 3x3:

47

Image
Convolution

Kernel

* =

1 1 1
1 1 1
1 1 1

October 2014OpenCV & CUDA.

 Exercises: Gaussian and Laplacian filters

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the Gaussian or Laplacian filter.

 Copy the result from device to host memory.

 Show the result

48

Gaussian Filter: Laplacian Filter:

1 2 1
2 4 2
1 2 1

0 1 0
1 −4 1
0 1 0

October 2014OpenCV & CUDA.

 Exercise: Corner detector with the structure tensor

49

𝐷𝑥
2 𝐷𝑥𝐷𝑦

𝐷𝑥𝐷𝑦 𝐷𝑦
2

October 2014OpenCV & CUDA.

 Given an image g(x) with noise.

 Smooth the image g(x) with the following functional:

 Differentiating and equating to zero, we obtain:

 We can solve by:

 Jacobi

 Gauss-Seidel

50

𝑈 𝑓 𝑥 =
1

2

𝑥

𝑓 𝑥 − 𝑔 𝑥 2 +
𝜆

2

<𝑥,𝑦>

𝑓 𝑥 − 𝑓 𝑦 2

𝑓𝑘+1 𝑥 =
𝑔 𝑥 + 𝜆 𝑦∈𝑁𝑥 𝑓

𝑘(𝑦)

1 + 𝜆|𝑁𝑥|
|𝑁𝑥| = # neighborhoods

of pixel x

𝑓0 𝑥 = 𝑔(𝑥)

October 2014OpenCV & CUDA.

51October 2014OpenCV & CUDA.

 GPUs can be controlled by:

 A single CPU thread

 Multiple CPU threads

52October 2014OpenCV & CUDA.

 Asynchronous calls (kernels, memcopies) don’t block
switching the GPU.

 The following code will have both GPUs executing
concurrently:

 cudaSetDevice(0);

 kernel<<<...>>>(...);

 cudaSetDevice(1);

 kernel<<<...>>>(...);

53October 2014OpenCV & CUDA.

 Using multiple GPUs with “OpenMP”

54October 2014OpenCV & CUDA.

• Key ideas

 Explicit control of data transfers between CPU and GPU

 Minimization of the data transfers

 Completeness

 Port everything even functions with little speed-up

 Solution

 Container for GPU memory with upload/download functionality

 GPU module function take the container as input/output parameters

55October 2014OpenCV & CUDA.

 Class GpuMat –for storing 2D (pitched) data on GPU

 Interface similar to cv::Mat(), supports reference counting

 Its data is not continuous, extra padding in the end of each row

 It contains:

 data - Pointer data beginning in GPU memory

 step – Distance in bytes is between two consecutive rows

 cols, rows - Fields that contain image size

 upload/download – Up/down memory from device

56October 2014OpenCV & CUDA.

Mat frame;

VideoCapture capture(camera);

cv::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor
::

getDefaultPeopleDetectorector());

capture >> frame;

vector<Rect> found;

hog.detectMultiScale(frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

57

Designed very similar!

Mat frame;

VideoCapture capture(camera);
cv::gpu::HOGDescriptor hog;
hog.setSVMDetector(cv::HOGDescriptor::

getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;

gpu_frame.upload(frame);

vector<Rect> found;
hog.detectMultiScale(gpu_frame, found,

1.4, Size(8, 8), Size(0, 0), 1.05, 8);

October 2014OpenCV & CUDA.

 CPU

 Incremental improvements (memory caches and complex
architectures)

 Few Multi-core (4/8/16)

 GPU

 Highly parallel with 100s of simple cores

 Easier to extend by adding more GPUs

 Continue to grow exponentially!

 Most of the GPUs are cheap!

58October 2014OpenCV & CUDA.

 We presented a small introduction of the parallel processing
using GPUs.

 There are many sofistecated strategies for make up your GPU-
code faster.

 Most problems can be parallelized and are suitable to be run
on GPUs

 One has to consider the properties of the GPU (shared memory,
cache, compute capability) when designing the kernels

59October 2014OpenCV & CUDA.

60October 2014OpenCV & CUDA.

61October 2014OpenCV & CUDA.

62October 2014OpenCV & CUDA.

63

Tract Estimations from the callosum corpus

October 2014OpenCV & CUDA.

64October 2014OpenCV & CUDA.

65October 2014OpenCV & CUDA.

