
Presented by:

Ángel R. Aranda Campos

Francisco J. Hernández López.

Jorge F. Madrigal Díaz

{arac, fcoj23, pacomd}@cimat.mx

OpenCV & CUDA

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2012

October 2012 OpenCV & CUDA. 2

Outline
 OpenCV 2.X

 Install

 OpenCV modules

 Drawing Primitives

 Basic Structures

 Image management
 Pixel access
 Browse a Picture

 Matrix Operation

 Histograms

 Homographies y Geometric transforms

 Video

October 2012 3 OpenCV & CUDA.

OpenCV 2.X

 Library of algorithms released under BSD license.

 Interfaces with C++, C, Python and soon JAVA.

 Can be compiled on Windows, Linux, Android and Mac.

 Has more than 2500 optimized algorithms.

 Support by a big community of users and developers.

 Multiple uses like visual inspection, robotic, etc.

October 2012 4 OpenCV & CUDA.

OpenCV Installation

 http://opencv.willowgarage.com/wiki/

 http://www.cmake.org/

October 2012 5 OpenCV & CUDA.

OpenCV modules

 Imgproc: Main functions for image processing.

 Highgui: Reading and writing of images and videos, also

functions for GUI.

 Features2d: Detectors of interest points, descriptors.

 Calib3d: Camera calibration, geometry of two views and

stereo functions.

 Video: Estimation of motion, tracking and background

subtraction.

October 2012 6 OpenCV & CUDA.

OpenCV modules

 Objdetect: Object detection functions (e.g. people).

 Ml: Machine learning functions.

 Flann: Computational geometry algorithms.

 Contrib: Miscellaneous contributions

 Legacy: Deprecated code

 Gpu: And more recently, GPUs functions (CUDA)

October 2012 7 OpenCV & CUDA.

Drawing Primiteves
 Line

 Circle

 Rectangle

 etc

October 2012 8 OpenCV & CUDA.

Basic Structures

 cv :: Mat and cv :: Mat_

 Basic management of matrices

October 2012 9 OpenCV & CUDA.

Basic Structures

October 2012 10 OpenCV & CUDA.

 cv :: Mat and cv :: Mat_

 Ensures correct memory release and implements reference

counting and superficial copies, avoiding unnecessary memory

creation.

Basic Structures

 cv::vector

 Similar to the clasic std::vector

 It is more recomendable for opencv objetcts

 Example:

October 2012 11 OpenCV & CUDA.

cv::vector<cv::Mat> vec_mat;

Image management

 Class cv::Mat is responsible for managing the image and

replaces the structure IplImage (versions < 2.0).

 We can update our old OpenCV structures to the newest

ones.

October 2012 12 OpenCV & CUDA.

IplImage* img = 0;

img=cvLoadImage(“Image1.jpg”);

Mat image;

image = imread(“Image1.jpg”, CV_LOAD_IMAGE_COLOR);

 OpenCV provides

functions for reading,

showing and saving of

images.

October 2012 13 OpenCV & CUDA.

Image management

Image management

 cv::Mat memory

 Is automatically released by its destructor.

 Has also a member release().

October 2012 14 OpenCV & CUDA.

Image management

 In this case, function does not reserve additional memory

October 2012 15 OpenCV & CUDA.

Image management

 Pixel access

 There are different ways to access the pixels within an instance

of cv:: Mat. For example, for grayscale images, we can use the

member function “.at<type >” (row,col)

 En el caso de imágenes con tres canales

October 2012 16 OpenCV & CUDA.

Image management

 Browse an Image

 There are several methods for browsing an image completely.

Depending on the computation time required, different

strategies can be implemented. In general, it makes use of the

member function. ptr <type> (row)

October 2012 17 OpenCV & CUDA.

Image management

 Browse an Image

October 2012 18 OpenCV & CUDA.

Matrix Operations

 OpenCV has several functions for many operations:

arithmetic, linear algebra, statistics, etc.. For example:

 cv::add

 cv::addWeighted

 cv::cartToPolar

 cv::eigen

October 2012 19 OpenCV & CUDA.

Matrix Operations

 Different ways of doing things of applying matrix

operations

 Through the explicit use of functions

 Overloaded operators

October 2012 20 OpenCV & CUDA.

Histograms

 CalcHist functions, calcBackProject, compareHist and

equalizeHist provide us the functionalities needed to control

histograms.

October 2012 21 OpenCV & CUDA.

Histograms

October 2012 OpenCV & CUDA. 22

 CompareHist

compareHist(InputArray H1, InputArray H2, int method)

 The variable method can be

 CV_COMP_CORREL Correlation

 CV_COMP_CHISQR Chi-Square

 CV_COMP_INTERSECT Intersection

 CV_COMP_BHATTACHARYYA Bhattacharyya distance

Homographies and Geometric

transforms
 There are several algorithms for calculating homographies,

fundamental matrix or various geometric transformations. In
general, these algorithms are based on matchings between a pair of
images.

 OpenCV provides a generic class to use different descriptors such
as:

 FAST

 MSER

 SIFT

 SURF

 BRIEF

 ORB

October 2012 23 OpenCV & CUDA.

Homographies and Geometric

transforms

 And it provides a function (cv:: findHomography) that given

a set of matchings between a pair of images, estimates a

homography based on two possible algorithms.

 RANSAC

 Least-Median Square

October 2012 24 OpenCV & CUDA.

Video

 To capture and save videos. OpenCV provides the class:

 cv::VideoCapture. This class has the overload of different

operators which make the code more intuitive and readable.

 cv::VideoWriter. This class is used for saving videos.

October 2012 25 OpenCV & CUDA.

October 2012 26 OpenCV & CUDA.

Video

Common Tasks

October 2012 OpenCV & CUDA. 27

 Image filtering

 Stereo Matching

 Morphology

 HOG

 Segmentation

 Etc.

 All Highly Parallelizable

Questions?

28 OpenCV & CUDA. October 2012

October 2012 OpenCV & CUDA. 29

Outline

 Parallel Computing

 Motivation

 GPU

 CUDA

 Programming Model

 Installing CUDA

 Examples

30 OpenCV & CUDA. October 2012

Parallel Computing

 Running more than one calculation at the same time or "in

parallel", using more than one processor.

OpenMP OpenMPI Cg,

CUDA,

OpenCL

31 OpenCV & CUDA. October 2012

Motivation

 You can solve problems:

 Finance.

 Graphics.

 Image processing and

Video.

 Linear Algebra.

 Physics.

 Chemistry.

 Biology.

 Etc.…

Medial Image

Segmentation

Differential Eq.

Molecular dynamics Object detection

CUDA ZONE

32 OpenCV & CUDA. October 2012

GPU
 Flexible and powerful Processor .

 Handles accuracy of (32/64)-bit in floating point.

 Programmed using high level languages.

 Offers lots of GFLOPS.

33 OpenCV & CUDA. October 2012

GPU
 Specialized for data parallel computing.

 Uses more transistors to data processing than flow control or data
storage.

34 OpenCV & CUDA. October 2012

CUDA (Compute Unified Device

Architecture)

 GPGPU technology (General-purpose computing on

graphics processing units) that lets you use the C

programming language to execute code on the graphic

processing unit (GPU).

 Developed by NVIDIA.

 To use this architecture it is required to have a GeForce 8

series (or Quadro equivalent), and more recently CPUs.

35 OpenCV & CUDA. October 2012

CUDA Features

 Supports the programming language C/C++, Fortran,

Matlab, LabView, etc..

 Unification of hardware and software for parallel computing.

 Supports single instruction, multiple data (SIMD).

 Libraries for FFT (Fast Fourier Transform), BLAS (Basic

Linear Algebra Subroutines), NPP, TRUSTH, CULA, etc.

 Works internally with OpenGL and DirectX.

 Supports operative systems:

 Windows, Linux and Mac OS.

36 OpenCV & CUDA. October 2012

Programming Model
 A program that is compiled to run on a

graphics card is called the Kernel.

 The set of threads that execute a kernel is
organized as a grid of thread blocks.

 A thread block is a set of threads that can
cooperate together:
 Easy access to shared memory.

 Synchronously.

 With a thread identifier ID.

 Blocks can be arranged for 1, 2 or 3
dimensions.

 A grid of thread blocks:
 It has a limited number of threads in a block.

 The blocks are identified by an ID.

 Arrangements can be of 1 or 2 dimensions.

37 OpenCV & CUDA. October 2012

Programming Model

 Running on the Host and Device.

Host = CPU

Device = GPU

Kernel = Set of

instructions than runs in

the device

38 OpenCV & CUDA. October 2012

Memory model

CPU

DRAM

Chipset

Host

DRAM

Local

Global

Constant

Texture

Device
GPU

Multiprocessor
Registers

Shared memory
Multiprocessor

Registers

Shared memory
Multiprocessor

Registers

Shared memory

Constant and Texture
caches

39 OpenCV & CUDA. October 2012

Memory management

 Allocate and free memory
 cudaMalloc ((void**) devPtr, size_t size)

 cudaFree (void *devPtr)

40 OpenCV & CUDA. October 2012

Memory management

 Copy memory.
 cudaMemcpy(void *dst, const void *src,

size_t count, enum cudaMemcpyKind kind)

41 OpenCV & CUDA. October 2012

Kind:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

Qualifiers for a function

 __device__

 Runs on the device.

 Called only from the device.

 __global__

 Runs on the device

 Called only from the host.

42 OpenCV & CUDA. October 2012

Qualifiers for a variable
 __device__

 Resides in global memory space.
 Has the lifetime of an application.
 Lives accessible from all threads within the grid, and from the host through

the library at runtime.

 Others:
 __constant__ (Optionally used with __device__)

 Resides in constant memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host through the library
at runtime.

 __shared__ (Optionally used with __device__)
 Lives in shared memory space of a thread block.

 Has the lifetime of a block.

 Only accessible from the threads that are within the block.

43 OpenCV & CUDA. October 2012

Kernel functions calls
 Example function

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3, dimension and size of each block.

 Ns: Type size_t, number of bytes inshared memory.

 St: Type cudaStream_t that indicates which stream will use the
kernel.

 (Ns and St are optional).

44 OpenCV & CUDA. October 2012

Automatically Defined Variables

 All __global__ and __device__ functions have access to the

following variables:

 gridDim (dim3), indicates the dimension of the grid.

 blockIdx (uint3), indicates the index of the bloque within the

grid.

 blockDim (dim3), indicates the dimension of the block.

 threadIdx (uint3), indicates the index of the thread within the

block.

45 OpenCV & CUDA. October 2012

Example

 CPU C

void add_matrix_cpu(float *a, float *b, float *c,
int N)

{

int i, j, index;

for (i=0;i<N;i++) {

 for (j=0;j<N;j++) {

 index =i+j*N;

 c[index]=a[index]+b[index];

 }

 }

}

void main() {

 add_matrix(a,b,c,N);

}

CUDA C

__global__ void add_matrix_gpu(float *a, float *b,
float *c, int N)

{

 int i =blockIdx.x*blockDim.x+threadIdx.x;

 int j=blockIdx.y*blockDim.y+threadIdx.y;

 int index =i+j*N;

 if(i <N && j <N)

 c[index]=a[index]+b[index];

}

void main() {

 dim3 dimBlock(blocksize,blocksize);

 dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

 add_matrix_gpu<<<dimGrid,
dimBlock>>>(a,b,c,N);

}

46 OpenCV & CUDA. October 2012

CUDA-Enabled Graphic Cards

October 2012 OpenCV & CUDA. 47

Architectures Capability

8-200 series 1.0-1.3

FERMI (400 series) 2.0-2.1

KEPLER (600 series) 3.0-3.5

http://www.nvidia.com/object/cuda_gpus.html

GPU Architectures and Capability

CUDA-Enabled Graphic Cards

October 2012 OpenCV & CUDA. 48

GeForce GT 640, C=2.1

TESLA C1060, C=1.3

GeForce GTX 480,

C=2.0

GeForce 8800 GT, C=1.1

Quadro FX 1700, C=1.1

GeForce 8400 GS, C=1.1

GTX > GTS > GT > GS

Installing CUDA

 Installing CUDA (Driver, Toolkit y SDK).

 http://developer.nvidia.com/cuda/cuda-downloads

49 OpenCV & CUDA. October 2012

Examples

October 2012 OpenCV & CUDA. 50
https://simtk.org/home/openmm

Examples – OpenCV & CUDA

October 2012 OpenCV & CUDA. 51

 GPU-ACCELERATED COMPUTER VISION

Examples – OpenCV & CUDA

October 2012 OpenCV & CUDA. 52

Examples – OpenCV & CUDA

October 2012 OpenCV & CUDA. 53

Examples – OpenCV & CUDA

October 2012 OpenCV & CUDA. 54

Examples – OpenCV & CUDA

October 2012 OpenCV & CUDA. 55

Tract Estimations from the callosum corpus

Questions?

56 OpenCV & CUDA. October 2012

57 OpenCV & CUDA. October 2012

