Centro de Investigacion en Matematicas, A.C.

OpenCV & CUDA

Presented by:

Angel R. Aranda Campos
Francisco]. Hernandez Lopez.
Jorge F. Madrigal Diaz
{arac, fc0j23, pacomd} (@cimat.mx

Guanajuato, Gto. October 2011

%4

CIMAT

@ OpenCV & CUDA.

OpenCV

CIMAT

October 2011

Outline

®* OpenCV 2.X

¢ Install

® OpenCV modules
® Basic Structures

® Drawing Primitives
¢ Image management

® Pixel access
® Browse a Picture

e Matrix Operation
® Histograms

° Homographies y Geometric transforms
® Video

OpenCV & CUDA.

.>

CIMAT

October 2011

™~

/

©

CIMAT

OpenCV 2.X

® Library of algorithms released under BSD license.

® Interfaces with C++, C, Python and soon JAVA.

* Can be compiled on Windows, Linux, Android and Mac.
* Has more than 2500 optimized algorithm:s.

® Support by a big community of users and developers.

® Multiple uses like visual inspection, robotic, etc.

OpenCV & CUDA. October 2011

™~

/

OpenCV Installation

® http: / / opencv. Willowgarage.com/ wiki/
* http://www. cmake.org/

OpenCV Overview: >500 functions

opencv.willowgarage.com

- ‘ General Image Processing Functions o4 .;:: b Image Pyram1ds

| Geometric

—
. : - =¥
| descriptors

. Camera
calibration,
= | Stereo, 3D

Utilitiesand
| Data Structures

Machine
Learning:
*Detection.

+ Recognition

= g e - "|Matr-ixMath, |

OpenCV & CUDA.

CIMAT

October 2011

/

CIMAT

OpenCV modules

° Imgprocz Main functions for image processing.

* Highgui: Reading and writing of images and videos, also

functions for interface creation.
* Features2d: Detectors of interest points, descriptors.

* Calib3d: Camera calibration, geometry of two views and

stereo functions.

* Video: Estimation of motion, tracking and background

subtraction.

OpenCV & CUDA. October 2011

™~

/

CIMAT

OpenCV modules

* Objdetect: Object detection functions (e.g. people).
® MI: Machine learning functions.

* Flann: Computational geometry algorithms.

® Contrib: Miscellaneous contributions

* Legacy: Deprecated code

* Gpu: And more recently, GPUs functions

OpenCV & CUDA. October 2011

™~

/

4 @\

Basic Structures

e cv :: Matand cv :: Mat_

® Basic management of matrices

1 // make a 7x7 complex matrix filled with 1+43j.
Mat M(7,7,CV_32FC2, Scalar(1,3));

s // and now turn M to a 100x60

// 15—channel 8—bit matrix.

- // The old content will be deallocated
M.create(100,60,CV.BUC(15));

@ OpenCV & CUDA. October 2011 /

4 ®\

Basic Structures

e cv :: Mat and cv :: Mat_

J/ create a 100x100 8—bit matrix
: Mat M(100,100,CV.8U);
// this will be compiled fine.
s // No any data conversion will be done.
Mat_<float>& M1 = (Mat_<float >&)M;
« // the program is likely to crash
// at the statement below
s M1(99,99) = 1.f;

@ OpenCV & CUDA. October 2011 /

Basic Structures

o cv::Point

.>

CIMAT

® Point_ < type > Substitute old types: CvPoint y CvPoint2D32f

Point2f a(0.3f, 0.f), b(0.f, 0.4f);
» Point pt = (a + b)x10.f;
cout << pt.x << ", " << pt.y << endl;

@ OpenCV & CUDA.

October 2011

\

/

[@\

CIMAT

Drawing Primiteves

® [ine

void line (Mat& img, Point ptl, Point pt2, const Scalar& color,
int thickness=1, int lineType=8, int shift=0);

e Circle

void circle (Mat& img, Point center, int radius,
const Scalar& color, int thickness=l1,

int lineType=8, int shift=0);
® Rectangle

void rectangle (Mat& img, Point ptl, Point ptZ2,
const Scalar& color, int thickness=l1,
int lineType=8, int shift=0);

® ctc

OpenCV & CUDA. October 2011

/

4 ®\

Image management

e (Class cv::Mat is responsible for managing the image and
replaces the structure IplIlmage (versions < 2.0).

® Ensures correct memory release and implements reference
counting and supertficial copies, avoiding unnecessary

memory creation.

@ OpenCV & CUDA. October 2011 /

Image management

1#finclude <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

3

int main()

s {

11

13

15
17

19

}

// read an image
cv::Mat image= cv::imread("img.jpg");

// create image window named "My Image”
cv ::namedWindow (" My_Image");

// show the image on window

cv ::imshow("My_Image" , image);

// wait key for 5000 ms
cv::waitKey (5000);

return 0:

@ OpenCV & CUDA.

CIMAT

® OpenCV provides

functions for reading,

showing and saving of

images.

October 2011

[@\

/

4 [Qf\

Image management

1 cv::Mat function() {
// create image

s cv::Mat ima(240,320,CV.8BU,cv:: Scalar(100));
S/ return it
s return ima:;

}

® In this case, function does not reserve additional memory

// get a gray—level image
2 cv::Mat gray= function ();

@ OpenCV & CUDA. October 2011 /

s 8"

Image management

e We can update our old OpenCV structures to the newest

ones.

Iplilmage#* ipllmage = cvLoadlmage("img.jpg");
2 cv::Mat imaged4(ipllmage, false);

@ OpenCV & CUDA. October 2011 /

@\

CIMAT

Image management

e Pixel access

® There are different ways to access the pixels within an instance
of cv:: Mat. For example, for grayscale images, we can use the

member tunction “.at<type >” (row,col)
1 image . at<uchar>(j,i)= wvalue;
® En el caso de imégenes con tres canales

image . at<cv ::Vec3b>(j,i)[channel]= value;

OpenCV & CUDA. October 2011

/

CIMAT

Image management

o cv::Mat memory
® s automatically released by its destructor.

® Has also a member release().

OpenCV & CUDA. October 2011

/

4 @\

Image management

® Browse an Image

® There are several methods for browsing an image completely.
Depending on the computation time required, different
strategies can be implemented. In general, it makes use of the

member function. ptr <type> (row)

@ OpenCV & CUDA. October 2011 /

®\

CIMAT
Image management
®* Browse an Image
1 // using .ptr and []
void colorReducel(cv::Mat &image, int div=64) {
3 int nl= image.rows; // number of lines
// total number of elements per line
5 int nc= image.cols * image.channels();
for (int j=0; j<nl; j++) {
; ucharx* data= image.ptr<uchar>(j);
for (int i=0; i<nc; i++) {
g // process each pixel
data[i]= data[i]/divxdiv + div/2;
11 // end of pixel processing
} // end of line
13 }
}
OpenCV & CUDA. October 2011

/

4 [@\

Matrix Operations

® OpenCV has several functions for many operations:
arithmetic, linear algebra, statistics, etc.. For example:
® cv::add
® cv::addWeighted
® cv::cartToPolar

® Cv: :eigen

@ OpenCV & CUDA. October 2011 /

CIMAT

Matrix Operations

e Different ways of doing things of applying matrix
operations

© Through the explicit use of functions

cv::addWeighted(imagel , alpha ,image2,
: beta ,gamma, result);

® Overloaded operators

cv::Image result = alpha®*imagel +
: betaximage2 + gamma;

OpenCV & CUDA. October 2011

@\

/

| S
Histograms

® CalcHist functions, calcBackProject, = compareHist and
equalizeHist provide us the functionalities needed to control
histograms.
1 cv::MatND hist;

// Compute histogram
cv::calcHist(&image,

1, // histogram of 1 image only
channels, // the channel used
cv::Mat(), // no mask is used
hist, // the resulting histogram
1, // it is a 1D histogram
histSize , // number of bins
ranges // pixel value range

);
@ OpenCV & CUDA. October 2011 /

L

L

-]

[f =

1

i

e

. . A
Homographies and Geometric 8>

CIMAT

transforms

® There are several algorithms for calculating homographies,
fundamental matrix or various geometric transformations. In
general, these algorithms are based on matchings between a
pair of images.

® OpenCV provides a generic class to use different descriptors
such as:
e SIFT
e SURF
e BRIEF

OpenCV & CUDA. October 2011

/

4 | | ™
Homographies and Geometric .
transforms

CIMAT

® And it provides a function (cv:: findHomography) that given
a set of matchings between a pair of images, estimates a
homography based on two possible algorithms.
e RANSAC

® | ecast-Median Square

@ OpenCV & CUDA. October 2011 /

Video

.>

CIMAT

* To capture and save videos. OpenCV provides the class:

° Cvz:VideoCapture. This class has the overload of different

operators which make the code more intuitive and readable.

OpenCV & CUDA.

October 2011

™~

/

4 [@\
Video |

using namespace cv;
2
int main(int, charxx)

s {
// open the default camera
6 VideoCapture cap(0);
// check if we succeeded
8 if(lcap.isOpened())
return —1;
10 Mat edges;
namedWindow (" edges” ,1);
12 for(;;)
{
14 Mat frame:
cap >> frame;
16 cvtColor(frame, edges, CVBGR2GRAY);
GaussianBlur(edges, edges, Size(7.,7), 1.5,
18 Canny(edges, edges, 0, 30, 3);
imshow (" edges” , edges);
20 if(waitKey(30) >= 0) break;
}

2 // the camera will be deinitialized automatically
// in VideoCapture destructor
24 return 0:

}

@ OpenCV & CUDA. October 2011 /

Common Tasks

® Image filtering
® Stereo Matching

° Morphology
e HOG

o All Highly Parallelizable

OpenCV & CUDA.

e X
iy 3 ~
b‘_ —

b o——

" tober 2011

/

Questions®?

@ OpenCV & CUDA.

D
L

CIMAT

October 2011

Outline

® Parallel Computing
® Motivation

e GPU

e CUDA

® Programming Model

° Installing CUDA

o Examples

OpenCV & CUDA.

.>

CIMAT

October 2011

™~

/

: 8"

Parallel Computing

® Running more than one calculation at the same time or "in

parallel", using more than one processor.

OpenMP

@ OpenCV & CUDA. October 2011 /

Motivation

® You can solve problems:

® Finance.
® Graphics.

® Image processing and

Video.
® Linear Algebra.
® Physics.
® Chemistry.
® Biology.
® Etc....

@ OpenCV & CUDA.

Differential Eq.

Molecular dynamics

Medial Image

Segmentation

Object detection

October 2011

/

GPU

¢ Flexible and powerful Processor .
® Handles accuracy of (32/64)-bit in floating point.
° Programmed using high level languages.

e Offers lots of GEFLOPS.

Theoretical
GFLOPY=
1750

wie VI DA GPU Single Pred sion
1500 —+—NVIDIA GPU Double Predision -
=g ntel CPU Single Pred sion)

e | bl CPU Diouble Predision
1250

1000

750
- R Tesla C2050

500

250

L mrmremmEee e Woodcrest €518 C1060

OpenCV & CUDA.

CIMAT

October 2011

/

e Uses more transistors to data processing than flow control or data
storage.

° Specialized for data parallel computing.

GPU

NN

ALU
ALU

ALU
ALU

Control

/

October 2011

GPU

CPU

OpenCV & CUDA.

(-

. .)
CUDA (Compute Unified Device i5

CIMAT

Architecture)

* GPGPU technology (General-purpose computing on
graphics processing units) that lets you use the C
programming language to execute code on the graphic
processing unit (GPU).

* Developed by NVIDIA.

® To use this architecture it is required to have a GeForce 8§

series (or Quadro equivalent).

X R X

N\J"TJI,D nvibDiA nVvVIDIA

OpenCV & CUDA. October 2011

/

lg\

CIMAT

CUDA Features language

Supports the programming language C, Fortran, (Mostly C +
+), Matlab, LabView, etc..

Unification of hardware and software for parallel computing.

Supports single instruction, multiple data (SIMD).

Libraries for FFT (Fast Fourier Transtorm), BLAS (Basic
Linear Algebra Subroutines), TRUSTH, CULA, etc.

Works internally with OpenGL and DirectX.

Supports operative systems:
® Windows, Linux and Mac OS.

OpenCV & CUDA. October 2011

/

Programming Model

® A program that is compiled to run on a
graphics card is called the Kernel.

® The set of threads that execute a kernel is

organized as a grid of thread blocks.

® A thread block is a set of threads that can
cooperate together:
o Easy access to shared memory.
* Synchronously.

With a thread identifier ID.

Blocks can be arranged for 1, 2 or 3
dimensions.

o A grid of thread blocks:
® [t has a limited number of threads in a block.
® The blocks are identified by an ID.

° Arrangements can be of 1 or 2 dimensions.

OpenCV & CUDA.

[')'d

CIMAT

Grid

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)

October 2011

/

Programming Model

® Running on the Host and Device.

Host = CPU
Device = GPU
Kernel = Set of

instructions than runs in

the device

OpenCV & CUDA.

['./,,4

CIMAT

Execution

Parallel kernel

KernelO<<<>>> ()

Serial code

Parallel kernel

Fernell<<<>>> ()

o j

Dewvice

Grid O

Block (0, O) Block (1,

0) || Block (2, 0)

Block (0, 1) || Block (1,

1) || Block (2, 1)

Host
Device
Grid 1
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)
October 2011

/

Memory model

it

Per-Device

CIMAT

Per-Block

=

EE-5
e

@ OpenCV & CUDA.

—

October 2011

/

Memory model

Host

1>

CIMAT

Chipset

Em
o

@ OpenCV & CUDA.

Device

Multiprocessor

Multiprocessor

Multiprocessor
Registers

Shared memory

Constant and Texture
caches

October 2011

/

CIMAT

Memory management

¢ Allocate and free memory

* cudaMalloc ((void**) devPtr, size t size)
e cudaFree (void *devPtr)

@ OpenCV & CUDA. October 2011 /

[@\

CIMAT

Memory management

° Copy memory.

e cudaMemcpy (void *dst, const void *src,
size t count, enum cudaMemcpyKind kind)

Kind:

* cudaMemcpyHostToHost

° cudaMemcpyHostToDevice
° cudaMemcpyDeviceToHost

° cudaMemcpyDeViceToDeVice

@ OpenCV & CUDA. October 2011 /

Qualifiers for a function

e device
® Runs on the device.

e Called only from the device.

* _ global__
® Runs on the device

e Called only from the host.

@ OpenCV & CUDA.

.>

CIMAT

October 2011

™

/

®\

CIMAT

Qualifiers for a variable

e device
® Resides in global memory space.

® Has the lifetime of an application.

® Lives accessible from all threads within the grid, and from the host through
the library at runtime.

e Others:

® _ constant__ (Optionally used with __device__)
Resides in constant memory space.

Has the lifetime of an application.

Lives accessible from all threads within the grid, and from the host through the library
at runtime.

* _ shared__ (Optionally used with __device__)

Lives in shared memory space of a thread block.
Has the lifetime of a block.

Only accessible from the threads that are within the block.

@ OpenCV & CUDA. October 2011 /

CIMAT

Kernel functions calls

° Example function
global void NameFunc(float *parameter, ...);

it must be called as follows:

NameFunc <<< Dg, Db, Ns, St >>> (parameterl,...);

* Dg:Type dim3, dimension and size of the grid.
* Db:Type dim3, dimension and size of each block.
® Ns: Type size_t, number of bytes inshared memory.

® St: Type cudaStream_t that indicates which stream will use the
kernel.

(Ns and St are optional).

OpenCV & CUDA. October 2011

™~

/

4 ®\

Automatically Defined Variables

° All __global__and __device__ functions have access to the
following variables:
® gridDim (dim3), indicates the dimension of the grid.
* blockldx (uint3), indicates the index of the bloque within the
grid.
® blockDim (dim3), indicates the dimension of the block.

® threadldx (uint3), indicates the index of the thread within the
block.

@ OpenCV & CUDA. October 2011 /

e

Example

CPUC

Madd_matrix_cpu(ﬂoat *a, float *b, float *c,
int N)

d
int i, j, index;
for (i=0;i<N;i++) {
for (j=05j<N;j++) {
index =i+j*N;
c[index]=a[index]+b[index];

b
b
b

void main() {

add_matrix(a,b,c,N);

}

@ OpenCV & CUDA.

CUDAC

lobal__ void
float *c, int N)

{

®\

CIMAT

dd_matrix_gpu(float *a, float *b,

int i =blockldx.x*blockDim.x+threadldx.x;

int j=blockldx.y*blockDim.y+threadldx.y;

int index =i+j*N;j
if(i <N && j <N)
c[index]=a[index]tb[index];

b

void main() {

dim3 dimBlock(blocksize,blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix_gpu<<<dimGrid,

dimBlock>>>(a,b,c,N);

b

October 2011

/

: ®
Installing CUDA

® Installing CUDA (Driver, Toolkit y SDK).

® http://developer.nvidia.com/cuda-toolkit-40

N DEVELOPER

nvinDia <ONE
DEVELOPER CENTERS TECHNOLOGIES TOOLS RESOURCES COMMUNITY

CUDA Toolkit 4.0 :
CUDA TOOLKIT 4.0 (MAY 2011)
Release Highlights

Easier Application Porting

e Share GPUs across multiple threads

@ OpenCV & CUDA. October 2011 /

Installing CUDA

WINDOWS 7, VISTA, WINDOWS XP DOWNLOADS

Developer Drivers for WinXP (270.81)
Support for XP on notebooks is being phased out and is not available
far this release. See Release MNotes and Getting Started Guides for

more information.

Developer Drivers for WinVista and Win7 (270.81)

Motebook Developer Drivers for WinVista and Win7 (275.33)

CUDA Toolkit

o C/C++ compiler

* Visual Profiler

& GPU-accelerated BLAS library

o GPU-accelerated FFT library

& GPU-accelerated Sparse Matrix library
GPU-accelerated RHG library

s Additional tools and documentation

L]

NEW? CLUDA Toolkit 4.0 Build Customization BUG FI¥ Update
Fixes error message “5(CUDABuildTasksPath) property iz not valid”

GPU Computing 50K - complete package including all code samples

Parallel Msight 2.0
Learn about additional tools, ibraries, and more...

CUDA Tools SDK (APIs for 3rd party performance analysis tools and

cluster management solutions)

OpenCV & CUDA.

32-bit 64-bit

32-bit 64-bit

32-bit 64-bit

32-bit b4-bit

documentation

download

32-bit b4-bit

browse online

download

CUDA Ecosystem

32-bit b4-bit

CIMAT

October 2011

/

CIMAT

Examp|eS

@ OpenCV & CUDA. https:/ /simtk.org/home/openmm October 2011

4 5
Examples - OpenCV & CUDA

&
@@
Q@%
A

October 2011

@ OpenCV & CUDA.

Examples - OpenCV & CUDA

Q0
=
=

O

s
-

Examples - OpenCV & CUDA

Particle Filker - Time comparison

70 -

B0 F

50 b b‘@
o =
o
gm 'M
i @
20 | g
10 H

1 2 3 4 = 6 ! 8 ver 2011
M= 163284,128,2%6,%12,1024,2045

t

4 5
Examples - OpenCV & CUDA
Tra,gtggra,ﬂghy

@ OpenCV & CUDA. October 2011 /

Questions®?

@ OpenCV & CUDA.

D
L

CIMAT

October 2011

Thank you!

D
L

