
Presented by:

Ángel R. Aranda Campos

Francisco J. Hernández López.

Jorge F. Madrigal Díaz

{arac, fcoj23, pacomd}@cimat.mx

OpenCV & CUDA

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2011

October 2011 OpenCV & CUDA. 2

Outline
 OpenCV 2.X

 Install

 OpenCV modules

 Basic Structures

 Drawing Primitives

 Image management
 Pixel access
 Browse a Picture

 Matrix Operation

 Histograms

 Homographies y Geometric transforms

 Video

October 2011 3 OpenCV & CUDA.

OpenCV 2.X

 Library of algorithms released under BSD license.

 Interfaces with C++, C, Python and soon JAVA.

 Can be compiled on Windows, Linux, Android and Mac.

 Has more than 2500 optimized algorithms.

 Support by a big community of users and developers.

 Multiple uses like visual inspection, robotic, etc.

October 2011 4 OpenCV & CUDA.

OpenCV Installation

 http://opencv.willowgarage.com/wiki/

 http://www.cmake.org/

October 2011 5 OpenCV & CUDA.

OpenCV modules

 Imgproc: Main functions for image processing.

 Highgui: Reading and writing of images and videos, also

functions for interface creation.

 Features2d: Detectors of interest points, descriptors.

 Calib3d: Camera calibration, geometry of two views and

stereo functions.

 Video: Estimation of motion, tracking and background

subtraction.

October 2011 6 OpenCV & CUDA.

OpenCV modules

 Objdetect: Object detection functions (e.g. people).

 Ml: Machine learning functions.

 Flann: Computational geometry algorithms.

 Contrib: Miscellaneous contributions

 Legacy: Deprecated code

 Gpu: And more recently, GPUs functions

October 2011 7 OpenCV & CUDA.

Basic Structures

 cv :: Mat and cv :: Mat_

 Basic management of matrices

October 2011 8 OpenCV & CUDA.

Basic Structures

October 2011 9 OpenCV & CUDA.

 cv :: Mat and cv :: Mat_

Basic Structures

 cv::Point

 Point_ < type > Substitute old types: CvPoint y CvPoint2D32f

October 2011 10 OpenCV & CUDA.

Drawing Primiteves
 Line

 Circle

 Rectangle

 etc

October 2011 11 OpenCV & CUDA.

Image management

 Class cv::Mat is responsible for managing the image and

replaces the structure IplImage (versions < 2.0).

 Ensures correct memory release and implements reference

counting and superficial copies, avoiding unnecessary

memory creation.

October 2011 12 OpenCV & CUDA.

 OpenCV provides

functions for reading,

showing and saving of

images.

October 2011 13 OpenCV & CUDA.

Image management

Image management

 In this case, function does not reserve additional memory

October 2011 14 OpenCV & CUDA.

Image management

 We can update our old OpenCV structures to the newest

ones.

October 2011 15 OpenCV & CUDA.

Image management

 Pixel access

 There are different ways to access the pixels within an instance

of cv:: Mat. For example, for grayscale images, we can use the

member function “.at<type >” (row,col)

 En el caso de imágenes con tres canales

October 2011 16 OpenCV & CUDA.

Image management

 cv::Mat memory

 Is automatically released by its destructor.

 Has also a member release().

October 2011 17 OpenCV & CUDA.

Image management

 Browse an Image

 There are several methods for browsing an image completely.

Depending on the computation time required, different

strategies can be implemented. In general, it makes use of the

member function. ptr <type> (row)

October 2011 18 OpenCV & CUDA.

Image management

 Browse an Image

October 2011 19 OpenCV & CUDA.

Matrix Operations

 OpenCV has several functions for many operations:

arithmetic, linear algebra, statistics, etc.. For example:

 cv::add

 cv::addWeighted

 cv::cartToPolar

 cv::eigen

October 2011 20 OpenCV & CUDA.

Matrix Operations

 Different ways of doing things of applying matrix

operations

 Through the explicit use of functions

 Overloaded operators

October 2011 21 OpenCV & CUDA.

Histograms

 CalcHist functions, calcBackProject, compareHist and

equalizeHist provide us the functionalities needed to control

histograms.

October 2011 22 OpenCV & CUDA.

Homographies and Geometric

transforms

 There are several algorithms for calculating homographies,

fundamental matrix or various geometric transformations. In

general, these algorithms are based on matchings between a

pair of images.

 OpenCV provides a generic class to use different descriptors

such as:

 SIFT

 SURF

 BRIEF

October 2011 23 OpenCV & CUDA.

Homographies and Geometric

transforms

 And it provides a function (cv:: findHomography) that given

a set of matchings between a pair of images, estimates a

homography based on two possible algorithms.

 RANSAC

 Least-Median Square

October 2011 24 OpenCV & CUDA.

Video

 To capture and save videos. OpenCV provides the class:

 cv::VideoCapture. This class has the overload of different

operators which make the code more intuitive and readable.

October 2011 25 OpenCV & CUDA.

October 2011 26 OpenCV & CUDA.

Video

Common Tasks

October 2011 OpenCV & CUDA. 27

 Image filtering

 Stereo Matching

 Morphology

 HOG

 All Highly Parallelizable

Questions?

28 OpenCV & CUDA. October 2011

October 2011 OpenCV & CUDA. 29

Outline

 Parallel Computing

 Motivation

 GPU

 CUDA

 Programming Model

 Installing CUDA

 Examples

30 OpenCV & CUDA. October 2011

Parallel Computing

 Running more than one calculation at the same time or "in

parallel", using more than one processor.

OpenMP OpenMPI Cg,

CUDA,

OpenCL

31 OpenCV & CUDA. October 2011

Motivation

 You can solve problems:

 Finance.

 Graphics.

 Image processing and

Video.

 Linear Algebra.

 Physics.

 Chemistry.

 Biology.

 Etc.…

Medial Image

Segmentation

Differential Eq.

Molecular dynamics Object detection

CUDA ZONE

32 OpenCV & CUDA. October 2011

GPU
 Flexible and powerful Processor .

 Handles accuracy of (32/64)-bit in floating point.

 Programmed using high level languages.

 Offers lots of GFLOPS.

33 OpenCV & CUDA. October 2011

GPU
 Specialized for data parallel computing.

 Uses more transistors to data processing than flow control or data
storage.

34 OpenCV & CUDA. October 2011

CUDA (Compute Unified Device

Architecture)

 GPGPU technology (General-purpose computing on

graphics processing units) that lets you use the C

programming language to execute code on the graphic

processing unit (GPU).

 Developed by NVIDIA.

 To use this architecture it is required to have a GeForce 8

series (or Quadro equivalent).

35 OpenCV & CUDA. October 2011

CUDA Features language

 Supports the programming language C, Fortran, (Mostly C +

+), Matlab, LabView, etc..

 Unification of hardware and software for parallel computing.

 Supports single instruction, multiple data (SIMD).

 Libraries for FFT (Fast Fourier Transform), BLAS (Basic

Linear Algebra Subroutines), TRUSTH, CULA, etc.

 Works internally with OpenGL and DirectX.

 Supports operative systems:

 Windows, Linux and Mac OS.

36 OpenCV & CUDA. October 2011

Programming Model
 A program that is compiled to run on a

graphics card is called the Kernel.

 The set of threads that execute a kernel is
organized as a grid of thread blocks.

 A thread block is a set of threads that can
cooperate together:
 Easy access to shared memory.

 Synchronously.

 With a thread identifier ID.

 Blocks can be arranged for 1, 2 or 3
dimensions.

 A grid of thread blocks:
 It has a limited number of threads in a block.

 The blocks are identified by an ID.

 Arrangements can be of 1 or 2 dimensions.

37 OpenCV & CUDA. October 2011

Programming Model

 Running on the Host and Device.

Host = CPU

Device = GPU

Kernel = Set of

instructions than runs in

the device

38 OpenCV & CUDA. October 2011

Memory model
Per-Threads

Local

Memory

Per-Block

Shared

Memory

Per-Device

K
ernel 0

K
ernel 1

Global

Memory

39 OpenCV & CUDA. October 2011

Memory model

CPU

DRAM

Chipset

Host

DRAM

Local

Global

Constant

Texture

Device
GPU

Multiprocessor
Registers

Shared memory
Multiprocessor

Registers

Shared memory
Multiprocessor

Registers

Shared memory

Constant and Texture
caches

40 OpenCV & CUDA. October 2011

Memory management

 Allocate and free memory
 cudaMalloc ((void**) devPtr, size_t size)

 cudaFree (void *devPtr)

41 OpenCV & CUDA. October 2011

Memory management

 Copy memory.
 cudaMemcpy(void *dst, const void *src,

size_t count, enum cudaMemcpyKind kind)

42 OpenCV & CUDA. October 2011

Kind:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

Qualifiers for a function

 __device__

 Runs on the device.

 Called only from the device.

 __global__

 Runs on the device

 Called only from the host.

43 OpenCV & CUDA. October 2011

Qualifiers for a variable
 __device__

 Resides in global memory space.
 Has the lifetime of an application.
 Lives accessible from all threads within the grid, and from the host through

the library at runtime.

 Others:
 __constant__ (Optionally used with __device__)

 Resides in constant memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host through the library
at runtime.

 __shared__ (Optionally used with __device__)
 Lives in shared memory space of a thread block.

 Has the lifetime of a block.

 Only accessible from the threads that are within the block.

44 OpenCV & CUDA. October 2011

Kernel functions calls
 Example function

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3, dimension and size of each block.

 Ns: Type size_t, number of bytes inshared memory.

 St: Type cudaStream_t that indicates which stream will use the
kernel.

 (Ns and St are optional).

45 OpenCV & CUDA. October 2011

Automatically Defined Variables

 All __global__ and __device__ functions have access to the

following variables:

 gridDim (dim3), indicates the dimension of the grid.

 blockIdx (uint3), indicates the index of the bloque within the

grid.

 blockDim (dim3), indicates the dimension of the block.

 threadIdx (uint3), indicates the index of the thread within the

block.

46 OpenCV & CUDA. October 2011

Example

 CPU C

void add_matrix_cpu(float *a, float *b, float *c,
int N)

{

int i, j, index;

for (i=0;i<N;i++) {

 for (j=0;j<N;j++) {

 index =i+j*N;

 c[index]=a[index]+b[index];

 }

 }

}

void main() {

 add_matrix(a,b,c,N);

}

CUDA C

__global__ void add_matrix_gpu(float *a, float *b,
float *c, int N)

{

 int i =blockIdx.x*blockDim.x+threadIdx.x;

 int j=blockIdx.y*blockDim.y+threadIdx.y;

 int index =i+j*N;

 if(i <N && j <N)

 c[index]=a[index]+b[index];

}

void main() {

 dim3 dimBlock(blocksize,blocksize);

 dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

 add_matrix_gpu<<<dimGrid,
dimBlock>>>(a,b,c,N);

}

47 OpenCV & CUDA. October 2011

Installing CUDA

 Installing CUDA (Driver, Toolkit y SDK).

 http://developer.nvidia.com/cuda-toolkit-40

48 OpenCV & CUDA. October 2011

Installing CUDA

October 2011 OpenCV & CUDA. 49

Examples

October 2011 OpenCV & CUDA. 50
https://simtk.org/home/openmm

Examples – OpenCV & CUDA

October 2011 OpenCV & CUDA. 51

Examples – OpenCV & CUDA

October 2011 OpenCV & CUDA. 52

Examples – OpenCV & CUDA

October 2011 OpenCV & CUDA. 53

Examples – OpenCV & CUDA

October 2011 OpenCV & CUDA. 54

Questions?

55 OpenCV & CUDA. October 2011

56 OpenCV & CUDA. October 2011

