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OpenCV 2.X 

 Library of algorithms released under BSD license. 

 Interfaces with C++, C, Python and soon JAVA.  

 Can be compiled on Windows, Linux, Android and Mac.  

 Has more than 2500 optimized algorithms.  

 Support by a big community of users and developers.  

 Multiple uses like visual inspection, robotic, etc. 
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OpenCV Installation  

 http://opencv.willowgarage.com/wiki/ 

 http://www.cmake.org/ 
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OpenCV modules 

 Imgproc: Main functions for image processing. 

 Highgui: Reading and writing of images and videos, also 

functions for interface creation. 

 Features2d: Detectors of interest points, descriptors. 

 Calib3d: Camera calibration, geometry of two views and 

stereo functions. 

 Video: Estimation of motion, tracking and background 

subtraction. 
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OpenCV modules 

 Objdetect: Object detection functions (e.g. people). 

 Ml: Machine learning functions. 

 Flann: Computational geometry algorithms. 

 Contrib: Miscellaneous contributions   

 Legacy: Deprecated code 

 Gpu: And more recently, GPUs functions 
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Basic Structures 

 cv :: Mat and cv :: Mat_  

 Basic management of  matrices 
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Basic Structures 
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 cv :: Mat and cv :: Mat_  



Basic Structures 

 cv::Point 

 Point_ < type > Substitute old types: CvPoint y CvPoint2D32f 
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Drawing Primiteves 
 Line 

 

 

 Circle 

 

 

 Rectangle 

 

 

 etc 
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Image management 

 Class cv::Mat is responsible for managing the image and 

replaces the structure IplImage (versions < 2.0).  

 Ensures correct memory release and implements reference 

counting and superficial copies, avoiding unnecessary 

memory creation. 
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 OpenCV provides 

functions for reading, 

showing and saving of 

images. 
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Image management 



Image management 

 In this case,  function does not reserve additional memory 
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Image management 

 

 We can update our old OpenCV structures to the newest 

ones. 
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Image management 

 Pixel access 

 There are different ways to access the pixels within an instance 

of cv:: Mat. For example, for grayscale images, we can use the 

member function  “.at<type >” (row,col) 

 

 

 En el caso de imágenes con tres canales 
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Image management 

 cv::Mat memory 

 Is automatically released by its destructor. 

 Has also a member release(). 
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Image management 

 Browse an Image 

 There are several methods for browsing an image completely. 

Depending on the computation time required, different 

strategies can be implemented. In general, it makes use of the 

member function. ptr <type> (row) 
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Image management 

 Browse an Image 
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Matrix Operations 

 OpenCV has several functions for many operations: 

arithmetic, linear algebra, statistics, etc.. For example: 

 cv::add  

 cv::addWeighted  

 cv::cartToPolar  

 cv::eigen 
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Matrix Operations 

 Different ways of doing things of applying matrix 

operations 

 Through the explicit use of functions 

 

 

 

 Overloaded operators 
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Histograms 

 CalcHist functions, calcBackProject, compareHist and 

equalizeHist provide us the functionalities needed to control 

histograms. 
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Homographies and Geometric 

transforms 

 There are several algorithms for calculating homographies, 

fundamental matrix or various geometric transformations. In 

general, these algorithms are based on matchings between a 

pair of images. 

 OpenCV provides a generic class to use different descriptors 

such as: 

 SIFT  

 SURF  

 BRIEF 
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Homographies and Geometric 

transforms 

 And it provides a function (cv:: findHomography) that given 

a set of matchings between a pair of images, estimates a 

homography based on two possible algorithms. 

 RANSAC  

 Least-Median Square 
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Video 

 To capture and save videos. OpenCV provides the class: 

 cv::VideoCapture. This class has the overload of different 

operators which make the code more intuitive and readable. 
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Common Tasks  
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 Image filtering 

 Stereo Matching 

 Morphology 

 HOG 

 

 

 All Highly Parallelizable 



Questions? 
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Parallel Computing 

 Running more than one calculation at the same time or "in 

parallel", using more than one processor. 

OpenMP OpenMPI Cg, 

CUDA, 

OpenCL 
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Motivation 

 You can solve problems: 

 Finance. 

 Graphics. 

 Image processing and 

Video. 

 Linear Algebra. 

 Physics.  

 Chemistry.  

 Biology. 

 Etc.… 

Medial Image 

Segmentation 

Differential Eq. 

Molecular dynamics Object detection 

CUDA ZONE 
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GPU 
 Flexible and powerful Processor . 

 Handles accuracy of (32/64)-bit in floating point. 

 Programmed using high level languages. 

 Offers lots of GFLOPS. 
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GPU 
 Specialized for data parallel computing. 

 Uses more transistors to data processing than flow control or data 
storage. 
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CUDA (Compute Unified Device 

Architecture) 

 GPGPU technology (General-purpose computing on 

graphics processing units) that lets you use the C 

programming language to execute code on the graphic 

processing unit (GPU). 

 Developed by NVIDIA. 

 To use this architecture it is required to have a GeForce 8 

series (or Quadro equivalent). 
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CUDA Features language 

 Supports the programming language C, Fortran, (Mostly C + 

+), Matlab, LabView, etc.. 

 Unification of hardware and software for parallel computing. 

 Supports single instruction, multiple data (SIMD). 

 Libraries for FFT (Fast Fourier Transform), BLAS (Basic 

Linear Algebra Subroutines), TRUSTH, CULA, etc.  

 Works internally with OpenGL and DirectX. 

 Supports operative systems: 

 Windows, Linux and Mac OS.  
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Programming Model 
 A program that is compiled to run on a 

graphics card is called the Kernel. 

 The set of threads that execute a kernel is 
organized as a grid of thread blocks. 

 A thread block is a set of threads that can 
cooperate together: 
 Easy access to shared memory. 

 Synchronously. 

 With a thread identifier ID. 

 Blocks can be arranged for 1, 2 or 3 
dimensions. 

 A grid of thread blocks: 
 It has a limited number of threads in a block. 

 The blocks are identified by an ID. 

 Arrangements can be of 1 or 2 dimensions. 
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Programming Model 

 Running on the Host and Device. 

Host = CPU 

Device = GPU 

Kernel = Set of 

instructions than runs in 

the device 
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Memory model 
Per-Threads 

Local 

Memory 

Per-Block 

Shared 

Memory 

Per-Device 

K
ernel 0 

K
ernel 1 

Global 

Memory 
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Memory model 

 

CPU 

DRAM 

Chipset 

Host 

DRAM 

Local 

Global 

Constant 

Texture 

Device 
GPU 

Multiprocessor 
Registers 

Shared memory 
Multiprocessor 

Registers 

Shared memory 
Multiprocessor 

Registers 

Shared memory 

Constant and Texture 
caches 
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Memory management 

 Allocate and free memory 
 cudaMalloc ((void**) devPtr, size_t size) 

 cudaFree (void  *devPtr)  
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Memory management 

 Copy memory. 
 cudaMemcpy(void  *dst, const void  *src, 

size_t count, enum cudaMemcpyKind kind) 
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Kind:  

•   cudaMemcpyHostToHost 

•   cudaMemcpyHostToDevice  

•   cudaMemcpyDeviceToHost  

•   cudaMemcpyDeviceToDevice 
 



Qualifiers for a function 

 __device__  

 Runs on the device. 

 Called only from the device. 

 

 __global__  

 Runs on the device  

 Called only from the host. 
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Qualifiers for a variable 
 __device__  

 Resides in global memory space. 
 Has the lifetime of an application. 
 Lives accessible from all threads within the grid, and from the host through 

the library at runtime. 

 Others: 
 __constant__  (Optionally used with __device__)   

 Resides in constant  memory space. 

 Has the lifetime of an application. 

 Lives accessible from all threads within the grid, and from the host through the library 
at runtime. 

 __shared__  (Optionally used with __device__)  
 Lives in shared memory space of a thread block. 

 Has the lifetime of a block. 

  Only accessible from the threads that are within the block. 
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Kernel functions calls 
 Example function 

 __global__ void NameFunc(float *parameter, …); 

  it must be called as follows: 

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…); 

 

 Dg: Type dim3, dimension and size of the grid.  

 Db: Type dim3, dimension and size of each block.  

 Ns:  Type size_t, number of bytes inshared memory. 

 St:  Type cudaStream_t  that indicates which stream will use the 
kernel. 

  (Ns and St are optional). 
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Automatically Defined Variables 

 All __global__ and __device__ functions have access to the 

following variables:  

 gridDim (dim3), indicates the dimension of the grid. 

 blockIdx (uint3), indicates the index of the bloque within the 

grid. 

 blockDim (dim3), indicates the dimension of the block. 

 threadIdx (uint3), indicates the index of the thread within the 

block. 
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Example 

 CPU C 

void add_matrix_cpu(float *a, float *b, float *c, 
int N) 

{  

int i, j, index;  

for (i=0;i<N;i++) {  

 for (j=0;j<N;j++) { 

        index =i+j*N;  

        c[index]=a[index]+b[index]; 

     }  

  }  

}  

void main() {  

   .....  

   add_matrix(a,b,c,N);  

}  

CUDA C 

__global__ void add_matrix_gpu(float *a, float *b, 
float *c, int N) 

{  

   int i =blockIdx.x*blockDim.x+threadIdx.x; 

   int j=blockIdx.y*blockDim.y+threadIdx.y; 

   int index =i+j*N;  

   if( i <N && j <N)  

     c[index]=a[index]+b[index];  

}  

void main() {  

   dim3 dimBlock(blocksize,blocksize);  

   dim3 dimGrid(N/dimBlock.x, N/dimBlock.y); 

   add_matrix_gpu<<<dimGrid, 
dimBlock>>>(a,b,c,N);  

}  
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Installing CUDA 

 Installing CUDA (Driver, Toolkit y SDK). 

 http://developer.nvidia.com/cuda-toolkit-40 
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Installing CUDA 
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Examples 
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Examples – OpenCV & CUDA 
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Examples – OpenCV & CUDA 
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Examples – OpenCV & CUDA 
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Examples – OpenCV & CUDA 
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Questions? 
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