
Tutorial:

OpenCV & CUDA
Presented by:

Ramon Aranda, Francisco Hernandez-Lopez, Francisco Madrigal,

{arac, fcoj23, pacomd}@cimat.mx

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2013

Outline

OpenCV & Cuda (Brief Introduction)…………….. (15 min)

Image processing in OpenCV …………………….. (7.5 min)

Memory allocation in the GPU……………………. (7.5 min)

Memory passing between OpenCV and CUDA…….. (10 min)

Operation on parallel (GPU management) ………….(5 min)

Operations on GPU: First Examples

Addition of Vectors/Matrices…………………………….. (20 min)

Considerations …………………………………………...(10 min)

October 2013 OpenCV & CUDA. 2

Parallel Image processing

Compose images ...(20 min)

Gradient magnitude…………………………………………(20 min)

Image filtering………………………………………………(35 min)

Corner detector…………………………………………… (20 min)

Diffusion image……………………………………………..(25 min)

Native Functions of OpenCV that use CUDA: gpu::mat..(15min)

Parallel Image processing using multiple GPUs: Examples(20min)

Conclusions: Potential applications……………………(10 min)

October 2013 OpenCV & CUDA. 3

Outline

Motivation:

Common Tasks on Image Processing

Image filtering

Stereo Matching

Morphology

HOG

Segmentation

Etc.

All Highly Parallelizable

October 2013 OpenCV & CUDA. 4

Motivation:

OpenCV & CUDA
You can solve problems:

Finance

Image processing and Video

Linear Algebra, optimization

problems

Physics, Chemistry, Biology

Etc.…

October 2013 Tutorial: OpenCV & CUDA. 5

Medial Image Proccessing Finite element methods

Object detection

Protein Simulation

Motivation:

GPU (using CUDA) vs multi-core CPU

October 2013 OpenCV & CUDA. 6

Introducction
OpenCV & CUDA

Introducction:

What is OpenCV?

Library of algorithms released under BSD license.

Interfaces with C++, C, Python and JAVA.

Can be compiled on Windows, Linux, Android and Mac.

Has more than 2500 optimized algorithms.

Support by a big community of users and developers.

Multiple uses like visual inspection, robotic, etc.

October 2013 OpenCV & CUDA. 8

Introducction:

How to install OpenCV

http://www.opencv.org/

http://www.cmake.org/

October 2013 OpenCV & CUDA. 9

Introducction:

OpenCV modules

Source: www.itseez.com

October 2013 OpenCV & CUDA. 10

Introducction:

OpenCV modules

Contrib: Miscellaneous contributions

Legacy: Deprecated code

Nonfree: Algorithms with copyright.

GPU: GPU functions (Can use with another CUDA libs)

October 2013 OpenCV & CUDA. 11

Introducction:

Parallel Computing

Running more than one calculation at the same time or "in parallel",

using more than one processor.

October 2013 OpenCV & CUDA. 12

OpenMP OpenMPI Cg,

CUDA,

OpenCL

Introducction:

GPU
Flexible and powerful Processor .

Handles accuracy of (32/64)-bit in floating point.

Programmed using high level languages.

Offers lots of GFLOPS.

October 2013 OpenCV & CUDA. 13

GeForce GTX TITAN From CUDA_C_Programming_Guide.pdf

Specialized for data parallel computing.

Uses more transistors to data processing than flow control or data
storage.

October 2013 OpenCV & CUDA. 14

From CUDA_C_Programming_Guide.pdf

Introducction:
GPU

Introduction
CUDA: Compute Unified Device Architecture

GPGPU technology (General-purpose computing on graphics

processing units) that lets you use the C programming language to

execute code on the graphic processing unit (GPU).

Developed by NVIDIA.

To use this architecture it is required to have a GeForce 8 series (or

Quadro equivalent), and more recently GPUs.

October 2013 OpenCV & CUDA. 15

Introduction:

CUDA Features

Supports the programming language C/C++, Fortran, Matlab,
LabView, etc..

Unification of hardware and software for parallel computing.

Supports: Single Instruction, Multiple Data (SIMD).

Libraries for FFT (Fast Fourier Transform), BLAS (Basic Linear Algebra
Subroutines), NPP, TRUSTH, CULA, etc.

Works internally with OpenGL and DirectX.

Supports operative systems:

Windows, Linux and Mac OS.

October 2013 OpenCV & CUDA. 16

Introduction:

CUDA-Enabled Graphic Cards

Architectures Capability

8-200 series 1.0-1.3

FERMI (400 series) 2.0-2.1

KEPLER (600 series) 3.0-3.5

October 2013 OpenCV & CUDA. 17

See: http://www.nvidia.com/object/cuda_gpus.html

GPU Architectures and Capability

Next Architectures (2014-

2015)

MaxWell

Volta

Introduction:

Installing CUDA

Installing CUDA (http://developer.nvidia.com/cuda/cuda-downloads)

October 2013 OpenCV & CUDA. 18

Questions?

October 2013 OpenCV & CUDA. 19

Image processing in OpenCV

Image processing in OpenCV

cv :: Mat

Basic management of matrices

October 2013 OpenCV & CUDA. 21

Image processing in OpenCV

Class cv::Mat is
responsible for
managing the image

OpenCV provides
functions for reading,
showing and saving of
images.

October 2013 OpenCV & CUDA. 22

Image processing in OpenCV

Pixel access

There are different ways to access the pixels within an instance of cv:: Mat.

For example, for grayscale images, we can use the member function

“.at<type >” (row,col)

In the case of more than one channel

October 2013 OpenCV & CUDA. 23

October 2013 OpenCV & CUDA. 24

Memory allocation in the

GPU

Memory allocation in the GPU

Allocate and free memory

cudaMalloc ((void**) devPtr, size_t size)

cudaFree (void *devPtr)

Those are similar to:

Malloc()..

Free()..

October 2013 OpenCV & CUDA. 26

Memory allocation in the GPU

Copy memory.
cudaMemcpy(void *dst, const void *src, size_t

count, enum cudaMemcpyKind kind)

Kind:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

October 2013 OpenCV & CUDA. 27

Memory passing between

OpenCV and CUDA

See example in “MemoryManage.cpp”

Operation on parallel

(GPU management)

Operation on parallel:

Programming Model

 A program that is compiled to run on a
graphics card is called the Kernel.

 The set of threads that execute a kernel
is organized as a grid of thread blocks.

 A thread block is a set of threads that
can cooperate together:
 Easy access to shared memory.

 Synchronously.

 With a thread identifier ID.

 Blocks can be arranged for 1, 2 or 3
dimensions.

 A grid of thread blocks:
 It has a limited number of threads in a block.

 The blocks are identified by an ID.

 Arrangements can be of 1 or 2 dimensions.

October 2013 OpenCV & CUDA. 30

Operation on parallel:

Programming Model

Running on the Host and Device.

October 2013 OpenCV & CUDA. 31

Host = CPU

Device = GPU

Kernel = Set of

instructions than runs

in the device

Operation on parallel:

Qualifiers for a kernel

__device__

Runs on the device.

Called only from the device.

__global__

Runs on the device

Called only from the host.

October 2013 OpenCV & CUDA. 32

Operation on parallel:

Qualifiers for variables

 __device__
 Resides in global memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host
through the library at runtime.

 Others:

 __constant__ (Optionally used with __device__)

 Resides in constant memory space.

 Has the lifetime of an application.

 Lives accessible from all threads within the grid, and from the host through the library at
runtime.

 __shared__ (Optionally used with __device__)

 Lives in shared memory space of a thread block.

 Has the lifetime of a block.

 Only accessible from the threads that are within the block.

October 2013 OpenCV & CUDA. 33

Operation on parallel:

Kernel function calls
 Example function

 Kernel in the Device:

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3, dimension and size of each block.

 Ns: Type size_t, number of bytes in shared memory.

 St: Type cudaStream_t that indicates which stream will use
the kernel.

 (Ns and St are optional).

October 2013 OpenCV & CUDA. 34

Operation on parallel:

Automatically Defined Variables

All __global__ and __device__ functions have access to the following

variables:

gridDim (dim3), indicates the dimension of the grid.

blockIdx (uint3), indicates the index of the bloque within the grid.

blockDim (dim3), indicates the dimension of the block.

threadIdx (uint3), indicates the index of the thread within the block.

October 2013 OpenCV & CUDA. 35

Operations on GPU:

First Examples

Operations on GPU:

Add One

October 2013 OpenCV & CUDA. 37

CPU C

void add_one_cpu(float *vector, int N)

{

int i;

for (i=0;i<N;i++) {

 vector [j]+=1.0f;

 }

}

void main() {

 add_one_cpu (a,N);

}

CUDA C

__global__ void add_one_gpu(float *d_vector, int N)

{

 int i=blockIdx.x*blockDim.x+threadIdx.x;

 if(i <N)

 d_vector[i] += 1.0f;

}

void main() {

 dim3 dimBlock(blocksize, 1, 1);

 dim3 dimGrid(N/dimBlock.x, 1,1);

 add_matrix_gpu<<<dimGrid, dimBlock>>>(a, N);

}

Operations on GPU:

Add One

Every element in the vector is processing by every thread in

each block

October 2013 OpenCV & CUDA. 38

Operations On GPU:

add vectors

Add two vectors

Create host memory: “a_h”, “b_h” and “c_h”

Initialize the vectors “a_h” and “b_h”.

Create device memory: “a_d”, “b_d” and “c_d”.

Copy memory from host to device of vectors a and b.

Add vectors a_d and b_d; the result is saved in vector c_d.

Copy memory from device to host of vector c.

Finally, show the result.

See “add_vectors.cpp”

October 2013 OpenCV & CUDA. 39

Operations on GPU:

add Matrices

Exercise: The code in “add_matrices.cpp” is incomplete; find

and correct the mistake.

Remember:

Create host memory: “a_h”, “b_h” and “c_h”.

Initialize “a_h” and “b_h”.

Crete device memory: “a_d”, “b_d” y “c_d”.

Copy memory from host to device.

Add matrix in the device.

Copy memory from device to host.

Finally, show the result.

October 2013 OpenCV & CUDA. 40

Operations On GPU:

add Matrices

October 2013 OpenCV & CUDA. 41

1,1 1,2

2,1 2,2

1,3

2,3

3,1 3,2 3,3

Indexes in Matrix form Indexes in Vector form

1 2

4 5

3

6

7 8 9

The formula in C/C++ is

Index_vector = i * #cols + j

1 2

4 5

3

6

7 8 9

1 2 3 4 5 6 7 8 9

Operations on GPU:

Considerations

There are some technique to improve the performance of

algorithms on GPU.

Multiple Data, Single Instruction:

32 threads (warp)

Avoid use “if ”.

Also, avoid “for” with different stop criteria in each thread

October 2013 OpenCV & CUDA. 42

if()  only 2
thread

 ….

else  30 trheads

 …

This takes 2 times!

Parallel Image processing

Parallel Image processing:

Exercise: Image Composition

Load two images and reserve memory to the output image.

Create memory on Device (for the 3 images).

Copy memory of the Host to Device.

Loop:

Kernel (CUDA_Compose_Images)

Return the result on the Host

Show the result

Free the memory

October 2013 OpenCV & CUDA. 44

Parallel Image processing:

EXErcise: Gradient Magnitude

Load the original image in host memory.

Create device memory: Imag_dev, ImagDx_dev, ImagDy_dev, ImagMG_dev.

Copy the original image from host to device memory.

Calculate Dx, Dy and GM in the device.

Copy the result from device to host memory.

Show the result.

October 2013 OpenCV & CUDA. 45

𝐷𝑥 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥 − 1, 𝑦

𝐷𝑦 𝑥, 𝑦 = 𝐼 𝑥, 𝑦 − 𝐼 𝑥, 𝑦 − 1

𝐺𝑀 𝑥, 𝑦 = 𝐷𝑥
2 𝑥, 𝑦 + 𝐷𝑦

2(𝑥, 𝑦)

Parallel Image processing:

Image filtering

Example: Mean filter

Load the original image in host memory.

Create device memory.

Copy the original image from host to device memory.

Calculate the mean filter.

Copy the result from device to host memory.

Show the result.

October 2013 OpenCV & CUDA. 46

Parallel Image processing:

Image filtering

October 2013 OpenCV & CUDA. 47

Mean filter with window size of 3x3:

Image
Convolution

Kernel

* =

1 1 1
1 1 1
1 1 1

Parallel Image processing:

Image filtering

October 2013 OpenCV & CUDA. 48

Exercises: Gaussian and Laplacian filters

Load the original image in host memory.

Create device memory.

Copy the original image from host to device memory.

Calculate the Gaussian or Laplacian filter.

Copy the result from device to host memory.

Show the result

Gaussian Filter: Laplacian Filter:

1 2 1
2 4 2
1 2 1

0 1 0
1 −4 1
0 1 0

Parallel Image processing:

 Corner detector

October 2013 OpenCV & CUDA. 49

Exercise: Corner detector with the structure tensor

𝐷𝑥
2 𝐷𝑥𝐷𝑦

𝐷𝑥𝐷𝑦 𝐷𝑦
2

Parallel Image processing:

Exercise - Diffusion image

October 2013 OpenCV & CUDA. 50

Given an image g(x) with noise.

Smooth the image g(x) with the following functional:

Differentiating and equating to zero, we obtain:

We can solve by:

Jacobi

Gauss-Seidel

𝑈 𝑓 𝑥 =
1

2
 𝑓 𝑥 − 𝑔 𝑥 2 +

𝜆

2
𝑥

 𝑓 𝑥 − 𝑓 𝑦 2

<𝑥,𝑦>

𝑓𝑘+1 𝑥 =
𝑔 𝑥 + 𝜆 𝑓𝑘(𝑦)𝑦∈𝑁𝑥

1 + 𝜆|𝑁𝑥|
 |𝑁𝑥| = # neighborhoods

 of pixel x

𝑓0 𝑥 = 𝑔(𝑥)

Parallel Image processing:

Exercise - Diffusion image

October 2013 OpenCV & CUDA. 51

Parallel Image processing

using multiple GPUs: Examples

GPUs can be controlled by:

A single CPU thread

Multiple CPU threads

October 2013 OpenCV & CUDA. 52

Parallel Image processing

using multiple GPUs: Examples

Asynchronous calls (kernels, memcopies) don’t block

switching the GPU.

The following code will have both GPUs executing

concurrently:

cudaSetDevice(0);

kernel<<<...>>>(...);

cudaSetDevice(1);

kernel<<<...>>>(...);

October 2013 OpenCV & CUDA. 53

Parallel Image processing

using multiple GPUs: Examples
Using multiple GPUs with “Openmp”

October 2013 OpenCV & CUDA. 54

GPU module design

considerations

• Key ideas

Explicit control of data transfers between CPU and GPU

Minimization of the data transfers

Completeness

Port everything even functions with little speed-up

Solution

Container for GPU memory with upload/download

functionality

GPU module function take the container as input/output

parameters

October 2013 OpenCV & CUDA. 55

GPU module design

considerations

Class GpuMat –for storing 2D (pitched) data on GPU

Interface similar to cv::Mat(), supports reference counting

Its data is not continuous, extra padding in the end of each row

It contains:

data - Pointer data beginning in GPU memory

step – Distance in bytes is between two consecutive rows

cols, rows - Fields that contain image size

upload/download – Up/down memory from device

October 2013 OpenCV & CUDA. 56

OpenCV GPU Module

Example
Mat frame;

VideoCapture capture(camera);

cv::HOGDescriptor hog;

hog.setSVMDetector(cv::HOGDescriptor::

 getDefaultPeopleDetectorector());

capture >> frame;

vector<Rect> found;

hog.detectMultiScale(frame, found,

 1.4, Size(8, 8), Size(0, 0), 1.05, 8);

October 2013 OpenCV & CUDA. 57

Designed very similar!

Mat frame;

VideoCapture capture(camera);
cv::gpu::HOGDescriptor hog;
hog.setSVMDetector(cv::HOGDescriptor::

 getDefaultPeopleDetectorector());

capture >> frame;

GpuMat gpu_frame;

gpu_frame.upload(frame);

vector<Rect> found;
hog.detectMultiScale(gpu_frame, found,

 1.4, Size(8, 8), Size(0, 0), 1.05, 8);

Conclusions:

CPU

Incremental improvements (memory caches and complex

architectures)

Few Multi-core (4/8/16)

GPU

Highly parallel with 100s of simple cores

Easier to extend by adding more GPUs

Continue to grow exponentially!

Most of the GPUs are cheap!

October 2013 OpenCV & CUDA. 58

Conclusions:

We presented a small introduction of the parallel processing

using GPUs.

There are many sofistecated strategies for make up your

GPU-code faster.

Most problems can be parallelized and are suitable to be run

on GPUs

One has to consider the properties of the GPU (shared

memory, cache, compute capability) when designing the

kernels

October 2013 OpenCV & CUDA. 59

Conclusions:

Potential applications

October 2013 OpenCV & CUDA. 60

Conclusions:

Potential applications

October 2013 OpenCV & CUDA. 61

Conclusions:

Potential applications

October 2013 OpenCV & CUDA. 62

Conclusions:

Potential applications

October 2013 OpenCV & CUDA. 63

Tract Estimations from the callosum corpus

Questions?

October 2013 OpenCV & CUDA. 64

October 2013 OpenCV & CUDA. 65

