i>

Centro de Investigacion en Matematicas, A.C. Y

OpenCV & CUDA

Exercises

By:

Angel R. Aranda Campos
Francisco ]J. Hernandez Lopez.
Jorge F. Madrigal Diaz
{arac, fc0j23, pacomd} (@cimat.mx

Guanajuato, Gto. October 2012

W




Yesterday
OpenCV

® Basic structures (Mat)
® Image processing

® Data access

@ OpenCV & CUDA.

CIMAT

October 2012

/




CUDA introduction

® Device Management

cudaGetDevice Count
cudaSetDevice
cudaGetDevice
cudaGetDeviceProperties

cudaChooseDevice

® Thread Management

cudaThreadSynChronize

® Qualifiers for a function

® Kernel functions calls

© Automatically Defined Variables

OpenCV & CUDA.

@

CIMAT

October 2012

~

/




CIMAT

Device Management

cudaGetDeviceCount - Returns the number of compute—capable
devices

cudaSetDevice - Sets device to be used for GPU executions

cudaGetDevice - Returns which device is Currently being used

CudaGetDeViceProperties - Returns information on the compute-

device

cudaChooseDevice - Select compute—device which best matches
criteria

OpenCV & CUDA. October 2012

@\

/




Device Management -
cudaGetDeviceProperties

Name - is an ASCII string identifying the device;

totalGlobalMem — total amount of global memory available

on the device in bytes;

sharedMemPerBlock — maximum amount of shared

memory available to a thread block in bytes;

regSPerBlock — maximum number of 32-bit registers
available to a thread block;

warpSize - is the warp size in threads;

OpenCV & CUDA. October 2012

@\

/




| ™
Device Management - @

cudaGetDeviceProperties

* maxThreadsPerBlock - maximum number of threads per block;

o maxThreadsDim[3] - maximum sizes of each dimension of a

block;

* maxGridSize|3] - maximum sizes of each dimension of a grid;

e totalConstMem - total amount of constant memory available on

the device in bytes;

® major, minor - major and minor revision numbers defining the

device’s compute capability;
* multiProcessorCount - is the number of multiprocessors on the

device.

OpenCV & CUDA. October 2012

/




Device Management -
CudaGetDewcePropertles

supporting L

evice 0: "GeForce 9400M"
CUDA Driver Version:
CUDA Runtime Version:
CUDA Capability Major/Minor wersion number:
Total amount of global memory: 2
Multiprocessors x Cores/MFP
Total amount of « stant m:mury.
Total amount of shared memory per block:
Total number of registers available per block:
Warp size:
Maximum number of threads per block:
aximum sizes of each dimension of a block:
aximum sizes of each dimension of a grid:
aximum memory pitch:
exture alignment:
Clock rate:
Concurrent copy and ex
Run time 1limit on kern:l:.
Integrated:
support host page-locked memory mapping:
Compute mode: Default (multiple host threads can use
this device simultaneously)

J = non

n oo

()

|Lure: '"MFP) = 16 (Cores)

h KB
. Ny
U

u]

0 =
o

Yy o own L)oo

OpenCV & CUDA. October 2012




. 8"

ThreadManagement

* cudaThreadSynchronize - Blocks until the device
has completed all preceding requested tasks.
cudaThreadSynchronize() returns an error it one of the

preceding tasks failed.

@ OpenCV & CUDA. October 2012 /




Qualifiers for a function

e device
® Runs on the device.

* Called only from the device.

° _global__
® Runs on the device

® Called only from the host.

@ OpenCV & CUDA.

CIMAT

October 2012

/




3
{ R 4

l
CIMAT

Kernel functions calls

Example function

__global___ void NameFunc(float *parameter, ...);

it must be called as follows:

NameFunc <<< Dg, Db, Ns, St >>> (parameterl,...);

Dg: Type dim3, dimension and size of the grid.
Db: Type dim3, dimension and size of each block.
Ns: Type size_t, number of bytes inshared memory.

St: Type cudaStream_t that indicates which stream will use the
kernel.

(Ns and St are optional).

OpenCV & CUDA. October 2012

~

/




- 5

CIMAT

Automatically Defined Variables

° All __global__and __device__ functions have access to the
following variables:
® gridDim (dim3), indicates the dimension of the grid.
* blockldx (uint3), indicates the index of the bloque within the
grid.
® blockDim (dim3), indicates the dimension of the block.

® threadldx (uint3), indicates the index of the thread within the
block.

@ OpenCV & CUDA. October 2012 /




Exercises Qutline

e CUDA

Examplel: Add one (kernel parameters)
Exercisel: Add Vectors
Exercise?: Add Matrix

® OpenCV&CUDA
Example3: Memory management (OpenCV=> CUDA > OpenCV)

Example4: Modity image

Exercise2: Compose images (Gray or RGB) ({¥
Exercise3: Gradient Magnitude.

Example4: Mean filter.

Exercise4: Gaussian and Laplacian filters.

Exercise5: Diffusion image.

OpenCV & CUDA.

I,+(1-

W

=
EB

CIMAT

)

October 2012

~

/




Examplel: Add one

® Create a host vector (“vector_h”).
® Initialize “vector_h”.

® Create a device vector (“vector_d”).

* Copy memory from “vector_h” to “vector_d”.

e Add 1 to “vector_d”

* Copy memory from “vector_d” to “vector_h”.

® Finally, show the result: “vector_h”.

OpenCV & CUDA.

i>

CIMAT

October 2012

~

/




a ’B N
[
CIMAT

Exercisel: Add vectors

® Add vectors (c =a + b).
® Create host memory: “a_h”, “b_h"” and “c_h”
® [nitialize the vectors “a_h” and “b_h"”.
® Create device memory: “a_d”, “b_d” and “c_d".
® Copy memory from host to device of vectors a and b.
® Add vectors a_d and b_d; the result is saved in vector c_d.
® Copy memory from device to host of vector c.

® Finally, show the result.

@ OpenCV & CUDA. October 2012 /




Exercise2: Add Matrix

® Create host memory: “a_h”, “b_h" and “c_h”.

e [nitialize “a_h” and “b_h".

® Crete device memory: “a_d”, “b_d”y “c_d".
® Copy memory from host to device.

® Add matrix in the device.

* Copy memory from device to host.

® Finally, show the result.

OpenCV & CUDA.

i>

CIMAT

October 2012

~

/




4 @\

Exercise 3: Image Composition

® Load two images and reserve memory to the output image.
® Create memory on Device (for the 3 images).
* Copy memory of the Host to Device.
® Loop:
® Kernel (CUDA_Compose_Images)

® Return the result on the Host

® Show the result

® Free the memory

@ OpenCV & CUDA. October 2012 /




CIMAT

Example 4: Mean filter

* Load the original image in host memory.

® Create device memory.

® Copy the original image from host to device memory.
® Calculate the mean filter.

* Copy the result from device to host memory.

e Show the result.

OpenCV & CUDA. October 2012

@\

/




e,
L

CIMAT

Example 4: Mean filter

e With window size of 3x3:

[mage Convolution

Kernel

1 1 1
1 1 1
@ OpenCV & CUDA. 1 1 1 October 2012

/




CIMAT

Exercise3: Gradient Magnitude

® |.oad the original image in host memory.

® Create device memory: Imag_dev, ImagDx_dey,
ImagDy_dev, ImagMG_dev.
* Copy the original image from host to device memory.

* Calculate Dx, Dy and GM in the device.

* Copy the result from device to host memory.

¢ Show the result.
D, (x,y) =1(x,y) —I(x—1,y)

D,(x,y) =I(x,y) — I(x,y — 1)

|
GM(x,y) = [DX(x,¥) + D2(x,y)
\

OpenCV & CUDA. October 2012

@\

/




" " " \
Exercised: Gaussian and Laplacian @
filters

* Load the original image in host memory.

® Create device memory.

® Copy the original image from host to device memory.
* Calculate the Gaussian or Laplacian filter.

* Copy the result from device to host memory.

e Show the result.

Gaussian Filter: Laplacian Filter:

1 2 T 0 1 0O
2 4 2) 1 —4 1)
1 2 1. 0 1 0.

Py
OpenCV & CUDA. October 2012

/




Exercise 5: Corner detector
e Estimate the structure tensor:
_ 5 _
D} DD,
i D.,D, Dy )
@ OpenCV & CUDA. October 2012 /




CIMAT

Exercise 6: Diffusion image

® Given an image g(x) with noise.

® Smooth the image g(x) with the following functional:

U(f @)= 3 (1))

A

S (F(x)-f())

* Differentiating and equating to zero, we obtain:

gx)+A ) ()

5

k+1 <X,y>
x f—
S ) 1+ AN

X

® We can solve by:
® Jacobi
® (Gauss-Seidel

OpenCV & CUDA.

N,

H neighborhoods

of pixel X

[P (x)=g(x)

October 2012

/




Exercise 6: Diffusion image

Maxlter:

lambda:

®\

CIMAT

) S—y

OpenCV & CUDA.

October 2012




Questions

@ OpenCV & CUDA.

a
L7

CIMAT

October 2012

/




Thank you

@ OpenCV & CUDA.

October 2012




