Centro de Investigacion en Matematicas, A.C.

OpenCV & CUDA

Exercises

By:

Angel R. Aranda Campos
Francisco]J. Hernandez Lopez.
Jorge F. Madrigal Diaz
{arac, fc0j23, pacomd} (@cimat.mx

Guanajuato, Gto. October 2011

2
1o

CIMAT

Yesterday
OpenCV

® Basic structures (Mat)
® Image processing

® Data access

@ OpenCV & CUDA.

CIMAT

October 2011

/

CUDA introduction

® Device Management
¢ cudaGetDeviceCount
e cudaSetDevice
¢ cudaGetDevice
* cudaGetDeviceProperties

e cudaChooseDevice

® Thread Management

° cudaThreadSynchronize
® Qualifiers for a function
e Kernel functions calls

© Autornatically Defined Variables

OpenCV & CUDA.

.>

CIMAT

October 2011

™~

/

CIMAT

Device Management

e cudaGetDeviceCount - Returns the number of compute-capable
devices

e cudaSetDevice - Sets device to be used for GPU executions
e cudaGetDevice - Returns which device is currently being used

° cudaGetDeviceProperties - Returns information on the
compute-device

e cudaChooseDevice - Select compute—device which best matches
criteria

OpenCV & CUDA. October 2011

®\

/

4 | ™
Device Management - 8>
cudaGetDeviceProperties

CIMAT

* Name - is an ASCII string identitying the device;

e totalGlobalMem — total amount of global memory available

on the device in bytes;

¢ sharedMemPerBlock — maximum amount of shared

memory available to a thread block in bytes;

o regsPerBlock — maximum number of 32-bit registers
available to a thread block;

® warpSize - is the warp size in threads;

@ OpenCV & CUDA. October 2011 /

| ™
Device Management - 8>
cudaGetDeviceProperties

CIMAT

maxThreadsPerBlock - maximum number of threads per block;

maxThreadsDim[S] - maximum sizes of each dimension of a

block;

maxGridSize[3] - maximum sizes of each dimension of a grid;

totalConstMem - total amount of constant memory available on

the device in bytes;

major, minor - major and minor revision numbers defining the

device’s compute capability;

e multiProcessorCount - is the number of multiprocessors on the
device.
OpenCV & CUDA. October 2011

/

Device Management -
CudaGetDeV|cePropert|es

devi1ce supporting LU

Deyvice O "GeForce S4@0M"
CUDA Driver VWersion:
CUDA FEuntime Yersion:
CUDA Capability Major/Minor wversion number:
Total amount of global memory: 265945DEE byvtes
Multiprocessors x Lores/MP = Lores: 2 [(MF) = 8 [LCoressMP) = 16 (LCores)
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: le384 bytes
Total number of registers awvailable per block: 5192
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: ERESR50HS g5588 x 1
Maximum memory pitch: 2147453647 bytes
Texture alignment: 256 bytes
Clock rate: 1.1 GHz
Concurrent copy and execution: [[u]
Fun time 1limit on kernels: Yes
Integrated: Yes
support host page-locked memory mapping: Yes
Compute mode: Deftault (multiple host threads can use
thiz device simultaneously)

OpenCV & CUDA. October 2011

4 [@\

ThreadManagement

o CudaThreadSynChronize - Blocks until the device
has completed all preceding requested tasks.
CudaThreadSynchronize() returns an error if one of the

preceding tasks failed.

@ OpenCV & CUDA. October 2011 /

Qualifiers for a function

e device
® Runs on the device.

e Called only from the device.

* _ global__
® Runs on the device

e Called only from the host.

@ OpenCV & CUDA.

.>

CIMAT

October 2011

™

/

CIMAT

Kernel functions calls

° Example function
global void NameFunc(float *parameter, ...);

it must be called as follows:

NameFunc <<< Dg, Db, Ns, St >>> (parameterl,...);

* Dg:Type dim3, dimension and size of the grid.
* Db:Type dim3, dimension and size of each block.
® Ns: Type size_t, number of bytes inshared memory.

® St: Type cudaStream_t that indicates which stream will use the
kernel.

(Ns and St are optional).

OpenCV & CUDA. October 2011

™~

/

4 ®\

Automatically Defined Variables

° All __global__and __device__ functions have access to the
following variables:
® gridDim (dim3), indicates the dimension of the grid.
* blockldx (uint3), indicates the index of the bloque within the
grid.
® blockDim (dim3), indicates the dimension of the block.

® threadldx (uint3), indicates the index of the thread within the
block.

@ OpenCV & CUDA. October 2011 /

CIMAT

Exercises QOutline
e CUDA

® Examplel: Add one (kernel parameters)
® Exercisel: Add Vectors
® Exercise?2: Add Matrix

® OpenCV&CUDA
® Example3: Memory management (OpenCV=> CUDA > OpenCV)
® Example4: Modity image
® Exercise2: Compose images (Gray or RGB) (o, +(1- a))l,)
® Exercise3: Gradient Magnitude.
® Example4: Mean filter.
® Exercise4: Gaussian and Laplacian filters.

® Exercise5: Diffusion image.

OpenCV&CUDA Exercises October 2011

™~

/

4 @\

Examplel: Add one

® Create a host vector (“vector_h”).

¢ Initialize “vector_h”.

® Create a device vector (“vector_d”).

* Copy memory from “vector_h” to “vector_d”.
e Add 1 to “vector_d”

* Copy memory from “vector_d” to “vector_h”.

® Finally, show the result: “vector_h”.

@ OpenCV&CUDA Exercises October 2011 /

4 ®\

Exercisel: Add vectors

® Add vectors (c =a + b).
® Create host memory: “a_h”, “b_h"and “c_h”
e |nitialize the vectors “a_h” and “b_h”.
® Create device memory: “a_d”, “b_d” and “c_d”".
® Copy memory from host to device of vectors a and b.
® Add vectors a_d and b_d; the result is saved in vector c_d.
* Copy memory from device to host of vector c.

® Finally, show the result.

@ OpenCV&CUDA Exercises October 2011 /

Exercise2: Add Matrix

® Create host memory: “a_h”,“b_h”and “c_h”.

e Initialize “a_h”and “b_h".

® Crete device memory: “a_d”,“b_d”y “c_d".
* Copy memory from host to device.

® Add matrix in the device.

* Copy memory from device to host.

® Finally, show the result.

OpenCV&CUDA Exercises

CIMAT

October 2011

@\

/

Example3: Memory management

@ OpenCV&CUDA Exercises October 2011 /

Exampled: Modify image

@ OpenCV&CUDA Exercises

October 2011

/

4 @\

Exercise 3: Image Composition

* Load two images and reserve memory to the output image.
* Create memory on Device (for the 3 images).
* Copy memory of the Host to Device.
® Loop:
® Kernel (CUDA_Compose_Images)

® Return the result on the Host
e Show the result

® Free the memory

@ OpenCV & CUDA. October 2011 /

4 ®\

Exercise3: Gradient Magnitude

® [oad the original image in host memory.

® Create device memory: Imag_dev, ImagDx_dev,

ImagDy_dev, ImagMG_dev.
® Copy the original image from host to device memory.
* Calculate Dx, Dy and GM in the device.
* Copy the result from device to host memory.
® Show the result.
D.(x,y) =I(x,y) —I(x—1y)

D:;(I,}T] — I[:::,}r] - ![x,}r - 1]

|
GM(x,y) = |D2(x,y) + D2(x,y)
)

@ OpenCV&CUDA Exercises October 2011 /

CIMAT

Exampled: Mean filter

* Load the original image in host memory.

® Create device memory.

® Copy the original image from host to device memory.
® Calculate the mean filter.

* Copy the result from device to host memory.

e Show the result.

OpenCV&CUDA Exercises October 2011

@\

/

N
L

CIMAT

Exampled: Mean filter

e With window size of 3x3:

Image Convolution

Kernel

1 1 1
1 1 1
@ OpenCV&CUDA Exercises '1 '1 '1 October 2011

/

e

™~
Exercise4: Gaussian and Laplacian B>

CIMAT

filters

* Load the original image in host memory.

® Create device memory.

® Copy the original image from host to device memory.
* Calculate the Gaussian or Laplacian filter.

* Copy the result from device to host memory.

e Show the result.

Gaussian Filter: Laplacian Filter:
1 2 1 0o 1 0
2 4 2 1 —4 1
1 2 1 0o 1 0
OpenCV&CUDA Exercises October 2011

/

4 ®\

Exercised: Diffusion image
* Given an image g(x) with noise.
® Smooth the image g(x) with the following functional:

Uﬁow=1ZXHm—me+”§XHw—fwﬁ
2 2

X <X,y>

* Differentiating and equating to zero, we obtain:

g (X) +4 Z f ‘ (y) ‘N ‘ # neighborhoods

f k+1(X) — <%y ofpixelx

AN, £9(x) = 9()

® We can solve by:
® Jacobi

® Gauss-Seidel

@ OpenCV&CUDA Exercises October 2011 /

Exerciseb: Diffusion image

CIMAT

lambda: 10

- - = " -

Original Frame

OpenCV&CUDA Exercises

October 2011

Questions

@ OpenCV&CUDA Exercises

D
L

CIMAT

October 2011

Thank you

@ OpenCV&CUDA Exercises

CIMAT

October 2011

/

