
By:

Ángel R. Aranda Campos

Francisco J. Hernández López.

Jorge F. Madrigal Díaz

{arac, fcoj23, pacomd}@cimat.mx

OpenCV & CUDA

Exercises

Centro de Investigación en Matemáticas, A.C.

Guanajuato, Gto. October 2011

Yesterday

October 2011 OpenCV & CUDA. 2

 Basic structures (Mat)

 Image processing

 Data access

CUDA introduction
 Device Management

 cudaGetDeviceCount

 cudaSetDevice

 cudaGetDevice

 cudaGetDeviceProperties

 cudaChooseDevice

 Thread Management

 cudaThreadSynchronize

 Qualifiers for a function

 Kernel functions calls

 Automatically Defined Variables

October 2011 3 OpenCV & CUDA.

Device Management
 cudaGetDeviceCount - Returns the number of compute-capable

devices

 cudaSetDevice - Sets device to be used for GPU executions

 cudaGetDevice - Returns which device is currently being used

 cudaGetDeviceProperties - Returns information on the
compute-device

 cudaChooseDevice - Select compute-device which best matches
criteria

October 2011 4 OpenCV & CUDA.

Device Management -

cudaGetDeviceProperties

 Name - is an ASCII string identifying the device;

 totalGlobalMem – total amount of global memory available

on the device in bytes;

 sharedMemPerBlock – maximum amount of shared

memory available to a thread block in bytes;

 regsPerBlock – maximum number of 32-bit registers

available to a thread block;

 warpSize - is the warp size in threads;

October 2011 5 OpenCV & CUDA.

Device Management -

cudaGetDeviceProperties

 maxThreadsPerBlock - maximum number of threads per block;

 maxThreadsDim[3] - maximum sizes of each dimension of a

block;

 maxGridSize[3] - maximum sizes of each dimension of a grid;

 totalConstMem - total amount of constant memory available on

the device in bytes;

 major, minor - major and minor revision numbers defining the

device’s compute capability;

 multiProcessorCount - is the number of multiprocessors on the

device.

October 2011 6 OpenCV & CUDA.

Device Management -

cudaGetDeviceProperties

October 2011 7 OpenCV & CUDA.

ThreadManagement

 cudaThreadSynchronize - Blocks until the device

has completed all preceding requested tasks.

cudaThreadSynchronize() returns an error if one of the

preceding tasks failed.

8 OpenCV & CUDA. October 2011

Qualifiers for a function

 __device__

 Runs on the device.

 Called only from the device.

 __global__

 Runs on the device

 Called only from the host.

9 OpenCV & CUDA. October 2011

Kernel functions calls
 Example function

 __global__ void NameFunc(float *parameter, …);

 it must be called as follows:

 NameFunc <<< Dg, Db, Ns, St >>> (parameter1,…);

 Dg: Type dim3, dimension and size of the grid.

 Db: Type dim3, dimension and size of each block.

 Ns: Type size_t, number of bytes inshared memory.

 St: Type cudaStream_t that indicates which stream will use the
kernel.

 (Ns and St are optional).

10 OpenCV & CUDA. October 2011

Automatically Defined Variables

 All __global__ and __device__ functions have access to the

following variables:

 gridDim (dim3), indicates the dimension of the grid.

 blockIdx (uint3), indicates the index of the bloque within the

grid.

 blockDim (dim3), indicates the dimension of the block.

 threadIdx (uint3), indicates the index of the thread within the

block.

11 OpenCV & CUDA. October 2011

Exercises Outline
 CUDA

 Example1: Add one (kernel parameters)

 Exercise1: Add Vectors

 Exercise2: Add Matrix

 OpenCV&CUDA

 Example3: Memory management (OpenCVCUDAOpenCV)

 Example4: Modify image

 Exercise2: Compose images (Gray or RGB) (I1+(1- )I2)

 Exercise3: Gradient Magnitude.

 Example4: Mean filter.

 Exercise4: Gaussian and Laplacian filters.

 Exercise5: Diffusion image.

12 October 2011 OpenCV&CUDA Exercises

Example1: Add one

 Create a host vector (“vector_h”).

 Initialize “vector_h”.

 Create a device vector (“vector_d”).

 Copy memory from “vector_h” to “vector_d”.

 Add 1 to “vector_d”

 Copy memory from “vector_d” to “vector_h”.

 Finally, show the result: “vector_h”.

13 October 2011 OpenCV&CUDA Exercises

Exercise1: Add vectors

 Add vectors (c = a + b).

 Create host memory: “a_h”, “b_h” and “c_h”

 Initialize the vectors “a_h” and “b_h”.

 Create device memory: “a_d”, “b_d” and “c_d”.

 Copy memory from host to device of vectors a and b.

 Add vectors a_d and b_d; the result is saved in vector c_d.

 Copy memory from device to host of vector c.

 Finally, show the result.

14 October 2011 OpenCV&CUDA Exercises

Exercise2: Add Matrix

 Create host memory: “a_h”, “b_h” and “c_h”.

 Initialize “a_h” and “b_h”.

 Crete device memory: “a_d”, “b_d” y “c_d”.

 Copy memory from host to device.

 Add matrix in the device.

 Copy memory from device to host.

 Finally, show the result.

15 October 2011 OpenCV&CUDA Exercises

Example3: Memory management

October 2011 OpenCV&CUDA Exercises 16

Example4: Modify image

October 2011 OpenCV&CUDA Exercises 17

Exercise 3: Image Composition

 Load two images and reserve memory to the output image.

 Create memory on Device (for the 3 images).

 Copy memory of the Host to Device.

 Loop:

 Kernel (CUDA_Compose_Images)

 Return the result on the Host

 Show the result

 Free the memory

18 OpenCV & CUDA. October 2011

Exercise3: Gradient Magnitude

October 2011 OpenCV&CUDA Exercises 19

 Load the original image in host memory.

 Create device memory: Imag_dev, ImagDx_dev,

ImagDy_dev, ImagMG_dev.

 Copy the original image from host to device memory.

 Calculate Dx, Dy and GM in the device.

 Copy the result from device to host memory.

 Show the result.

Example4: Mean filter

October 2011 OpenCV&CUDA Exercises 20

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the mean filter.

 Copy the result from device to host memory.

 Show the result.

Example4: Mean filter

October 2011 OpenCV&CUDA Exercises 21

 With window size of 3x3:

* =

Image Convolution

Kernel

Exercise4: Gaussian and Laplacian

filters

October 2011 OpenCV&CUDA Exercises 22

 Load the original image in host memory.

 Create device memory.

 Copy the original image from host to device memory.

 Calculate the Gaussian or Laplacian filter.

 Copy the result from device to host memory.

 Show the result.

 Gaussian Filter: Laplacian Filter:

Exercise5: Diffusion image

October 2011 OpenCV&CUDA Exercises 23

 Given an image g(x) with noise.

 Smooth the image g(x) with the following functional:

 Differentiating and equating to zero, we obtain:

 We can solve by:

 Jacobi

 Gauss-Seidel

      



x yx

yfxfxgxfxfU
,

22
)()(

2
)()(

2

1
)(



x

yx

k

k

N

yfxg

xf













1

)()(

)(
,1

xN # neighborhoods

of pixel x

)()(0 xgxf 

Exercise5: Diffusion image

October 2011 OpenCV&CUDA Exercises 24

Questions

25 October 2011 OpenCV&CUDA Exercises

26 October 2011 OpenCV&CUDA Exercises

