
Blender Basic Network setup - Boil it down to the
basics by “Old Jim” Coulter

Making games and playing them is a lot of fun, but it is even more fun if you can make games to play
together with your friends. I will show you how to “cook” a basic network setup in blender. Since
Blenders game engine has no build in network support we have to do it in Python, for this you need a
matching Python installation for Blender. Take a close look at the terminal or dos-box output when
Blender starts, it will tell you which version it needs and if the import worked.

Ingredients:
IP: Unique Computer name
 LAN IP: Only accessible inside the local network
 Internet IP: Accessible form all over the world (when routers and firewalls allows it)
Port: Access line to a specific communication
Socket: Transmitting and receiving station.
Libraries: Importing cookbooks (modules) from the Python Library gives blender info on how to
prepare a special meal
Logic Bricks: central switching station of the Blender game engine.
Objects: We will use 2 cubes which we can move around and these movements we will send over the
Network.

If you load the file WSAG-BasicNetwork.blend you can find 2 scripts in there which are
relevant to our network setup. (Server.py and Client.py). These scripts show what you get if you boil
a network down to its basics. So what do they do?

Server.py:

#------------SETUP--------------#
1.from GameLogic import *
2.from socket import *
3.from cPickle import *
4.cont = GameLogic.getCurrentController()
5.obj = cont.getOwner()

6.if obj.OneTime == 0:
7. Host = ''
8. ServerPort = 10000
9. GameLogic.sServer = socket(AF_INET,SOCK_DGRAM)
10. GameLogic.sServer.bind((Host,ServerPort))
11. GameLogic.sServer.setblocking(0)
12. obj.OneTime = 1

13.PosYou = obj.getPosition()

14. scene = getCurrentScene()
15.Client = scene.getObjectList()["OBClient"]

16.PosClient = [0,0,0]

#------------RECEIVE/SEND--------------#
17.try:
18. Data, CLIP = GameLogic.sServer.recvfrom(1024)
19. UPData = loads(Data)
20. PosClient = [UPData[0],UPData[1],UPData[2]]
21. Client.setPosition(PosClient)
22. Data = dumps((PosYou))

23. GameLogic.sServer.sendto(Data,CLIP)
24.except:
25. pass

1.from GameLogic import *
From the library we import the book (module) called GameLogic. By importing this book we have
access to all the information about the blender game engine.

2.from socket import *
Gives us all the information about network socket setups

3.from cPickle import *
Gives us information on how to pack data in to a container (similar to a zip program)

4.cont = getCurrentController()
This command gets the Controller for the script and saves it to the variable cont. The logic brick
we just made accessible, is the Controller that gave the order to execute the python script.

5.Obj = Cont.getOwner()
Gets us the owner of this script. That would be the object that owns the logic brick.

6.if Obj.OneTime == 0:
12. Obj.OneTime = 1

Line 6 calls up the property OneTime and if its value is equal to 0 it will execute the lines below that
are indented. Line 12 will change the value of the property OneTime to 1. By changing the property
we make sure that the indented lines below line 5 only run one time.

7. host = ''
Saves a empty text holder in to the variable host. The purpose of this empty text holder is to make a
place where later the computer name can be written in to. So you may ask; why not write the computer
name in to it right away? Well you could do that but then this script would only run on your own
computer. So that’s why we leave it empty and let the socket fill it out later all by it self. You also
would have the option to write localhost between the „''“, that would say the script right a way to
enter the name of the local computer in there… But why write more then necessary?

8. ServerPort = 10000
Saves the value 10000 in to the variable ServerPort. This value will be the port number over
witch the socket will communicate. That’s why you will have to make sure that your firewall
and your router won’t block this and the other ports that will be added later. Information on
how you can setup your firewall and router to forward information over this port, can be
found in the manuals of your firewall and router. If any questions or problems come up then
you can ask them in the gameblender.org forum.

9. GameLogic.sServer = socket(AF_INET,SOCK_DGRAM)
This code will create a socket that uses the protocol that is defined inside of the brackets and saves it
to the global variable GameLogic.sServer.
AF_INET,SOCK_DGRAM is the definition for the UDP (User Datagram Protocol) protocol. We will
use this protocol because it is very fast and will keep on working even if it once can’t send or receive a
packet.

10. GameLogic.sServer.bind((Host,ServerPort))

The code .bind((host,Serverport)) is used to bind the information that we have saved in to
variable host and Serverport to the socket. Now the socket knows on what computer and over
witch port he should communicate.

11. GameLogic.sServer.setblocking(0)
The socket will already work with the lines above. But as I already mentioned by line 8 we would like
to make sure that the script will keep on running even if the socket did not send or receive a packet.
This can happen very easy, if the connection having a problem, the client and server have different
streaming rates the connection is temporary used by a other program… That’s why we will use the
code .setblocking(0). The 0 in the brackets will tell the script that it should not block even if it
did not send or receive anything. If you would put a 1 there, the script would try to receives/send a
packet until it has had success. If you would do this everything would be as slow as the slowest client
that is connected with the server.

13.PosYou = obj.getPosition()
Gets the position of servers cube (the server controls the blue cube)

14. scene = getCurrentScene()
15.Client = scene.getObjectList()["OBClient"]

The command getCurrenScene() will get all the elements of the current scene in to the script.
These elements will be saved in the variable scene. The variable scene contains all the elements of
the current scene, now we would like to have access to all the Objects in the scene, this will happen by
using the command .getObjectList(). In the square brackets we write the name of the object
that we would like to save to the variable objPump1. Its important that you put the letters “OB” in
front of the objects name.

16.PosClient = [0,0,0]
In the variable PosClient we provide a list with 3 elements. This list will be later filed with the
coordinates of the player. The 3 elements [0,0,0] stand for the X, Y and Z coordinates.

17.try:
Line 17 starts to try to execute the indented lines below if one of the lines fail lines 24 and 25 come in
to action telling the script to just pass on. The only line below that actually can fail is the Line 18. It
will fail when it tries to receive and there is no data there to receive. This can for example happen if no
Client is sending any data.

18. Data, CLIP = GameLogic.sServer.recvfrom(1024)
The variable GameLogic.sServer contains the information about the socket. The code
.recvfrom commands the socket to receive data. (1024) defines the maximal size, that the buffer
can receive at once.

Every time we receive data we get 2 blocks. The first block contains the data and is saved in the
variable Data. The second block contains sender address and is saved in the variable CLIP (= Client
IP)

19. UPData = loads(Data)
Now we will use the methods from the cPickle module for the first time. The received data will be
unpacked and saved to the variable UPData, As you will see in line 22, data that is send over the
network is first packed in to a container.

20. PosClient = [UPData[0],UPData[1],UPData[2]]
The received und now unpacked data is saved in to the list we made in line 16.
UPData[0] = Position on the world axis X
UPData[1] = Position on the world axis Y
UPData[2] = Position on the world axis Z

21. Client.setPosition(PosClient)
The list we just have filed out is now used to set the position of the clients player.

22. Data = dumps((PosYou))
The command dumps will pack any data inside the double brackets in to a container and save it to
the variable Data. Important: You have to use double brackets here “((PosYou))” and not single
brackets “(PosYou)”. The Variable PosYou that we are packing here contains the information of the
coordinates of the Server cube (blue) see line 13.

23. GameLogic.sServer.sendto(Data,CLIP)
To send Data we use GamLogic.sServver to call up the socket and give it the command
.sendto. To send data do it just as in line 18, you need 2 things: The data and the address that this
packed should be send to. This information you put inside the brackets.

24.except:
25. pass

These lines work together with line 17 and already where explained.

The client script.py is very similar to the server.py script, the only real difference is that it sends data
to the server first, so it dose not have an already received package that contains the servers address; so
this will have to be entered manually. We do this in the script setup.py line 10. By entering the servers
IP address there behind the global variable GameLogic.IP. If you now study the script below you may
say he way not just write it in to line 7 instead of putting the global variable GameLogic.IP there. You
are right, you can do so but by having the IP entering in the setup.py script it makes it easier to find it.
Also the setup.py script contains other informations that help a user to start this program in any
network. See lines that are behind a comment mark “#”. They are not part of the script, but give you
information on how to use this script. So that’s why we will have the 3D window on the left side and
the setup.py script on the right side when we open the BasicNetwork.blend file.

Client.py:

#------------SETUP--------------#
1.from GameLogic import *
2.from socket import *
3.from cPickle import *
4.cont = GameLogic.getCurrentController()
5.obj = cont.getOwner()

6.if obj.OneTime == 0:
7. ServerIP = GameLogic.IP
8. Serverport = 10000

9. Clientname = ''
10. ClientPort = 10001
11. GameLogic.sClient = socket(AF_INET,SOCK_DGRAM)
12. GameLogic.sClient.bind((Clientname,ClientPort))
13. GameLogic.host = (ServerIP,Serverport)
14. GameLogic.sClient.setblocking(0)
15. obj.OneTime = 1

16.PosYou = obj.getPosition()

17.scene = getCurrentScene()
18.Server = scene.getObjectList()["OBServer"]

19.PosServer = [0,0,0]

#------------RECEIVE/SEND--------------#
20.Data = dumps((PosYou))
21.GameLogic.sClient.sendto(Data,GameLogic.host)

22.try:
23. Data, SRIP = GameLogic.sClient.recvfrom(1024)
24. UPData = loads(Data)
25. PosServer = [UPData[0],UPData[1],UPData[2]]
26. Server.setPosition(PosServer)
27. Server.setOrientation(OriServer)
28. except:
29. pass

Since all the commands in this script where explained in the server.py script I will only give a short
summary on these lines of code:
Lines 1 – 5: Basic setup to access the Object, its properties and logic bricks
Lines 6 + 15: Make sure that the intended lines below Line 6 only run once.
Line 7: Saves the global Variable that contains the IP to a local Variable.
Lines 8 – 12: Setup the Socket
Line 13: Saves the complete Server address to a variable.
Line 14: Tells the script to just keep running even if no data was send/received.
Line 16: Gets the position of the red cube.
Line 17 + 18: Make the blue cube accessible by this script.
Line 19: Makes a empty list, that will be uses to set the servers cube (blue cube)
Line 20 + 21: Packs your position in a container and sends it to the server.
Line 22, 28,29: Will try to run the intended lines below line 22, if they fail the script will just pass on.

Appetite for more
I hope this little starter whetted your appetite for more.
If you take a closer look at:
-WSAG-PumpkinRun-Tutorial.pdf
-WSAG-PumpkinRun.blend
These files will give you more detailed Information about the WSAG Network.
Also a lot of information about more complex network „meals“ can be found at www.wsag.ch.vu.
If any questions come up you can ask them at the gameblender.org forum.

http://www.wsag.ch.vu/

	Blender Basic Network setup - Boil it down to the basics by “Old Jim” Coulter
	Ingredients:
	Server.py:
	Client.py:

	Appetite for more

