
ON R E L A T I V E  P E R I O D I C  S O L U T I O N S  OF T H E  

P L A N A R  G E N E R A L  T H R E E - B O D Y  P R O B L E M *  

R. B R O U C K E * *  

Jet PropulsionLaboratory, Pasadena, Calif., U.S.A. 

(Received 29 August, 1974) 

Abstract. We describe two relatively simple reductions to order 6 for the planar general three-body 
problem. We also show that this reduction leads to the distinction between two types Of periodic 
solutions: absolute or relative periodic solutions. An algorithm for obtaining relative periodic solutions 
using heliocentric coordinates is then described. It is concluded from the periodicity conditions that 
relative periodic solutions must form families with a single parameter. Finally, two such families have 
been obtained numerically and are described in some detail. 

1. Introduction 

In the present article we will discuss two families of relative periodic solutions of the 
general three-body problem. Absolute periodic solutions are periodic in a fixed co- 
ordinate system while relative periodic solutions are periodic in a suitably chosen 
rotating system (Broucke and Boggs, 1975). 

We will also discuss in detail a theoretical property that is intimately related to the 
existence of such relative periodic solutions. It turns out that the planar general prob- 
lem can be reduced to a system of order eight by only using the integrals of the center 
of mass. However, it turns out that we have another remarkable property: the eighth- 
order system can be reduced to a sixth-order system and a quadrature. This reduction 
uses only the angular momentum integral and is in fact Jacobi's elimination of the 
nodes. The relative periodic orbits are periodic solutions of the sixth-order system and 
the absolute periodic orbits are periodic solutions of a seventh-order system. 

The reduction of the equations to order six is well known for a long time; see, for 
instance, Murnaghan (1936), Van Kampen and Wintner (1937), LemaRre (1952), 
Deprit and Delie (1961) or Deprit and Roels (1962). However, these authors have failed 
to note that this reduction leads to a distinction between two types of periodic solu- 
tions. It is only in the last year that the distinction between relative and absolute 
periodic solutions in the general three-body problem has become clear; see H6non 
(1974) and Hadjidemetriou (1975) or Broucke and Boggs (1975).,For these reasons 
we include in the present paper two new methods of reduction of the general three-body 
problem. In the first approach, which is essentially barycentric (Sections 3 through 6), 
we use the notation of Deprit, Delie and Roels, but we believe that we have a more 
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simple derivation because we work directly with the equations of motion rather than 
the Lagrangian. In this derivation we make exPlicit use of the angular momentum 
integral. In the second derivation (Sections 7 through 10), which is essentially helio- 
centric, we use the Lagrangian and we show that by an appropriate change of variables, 
a Lagrangian with an ignorable coordinate is obtained. This leads to a Routhian with 
only three degrees of freedom and the angular momentum integral is obtained as a 
result of the reduction. 

Both reductions that are given are remarkably simple, although the final equations of 
motion are in all cases more complicated than those of the eighth-order system, for in- 
stance, in the heliocentric frame. In all our numerical integrations, we have used the 
heliocentric equations (35) of Section 7. Another reason for this is that the reduced 
equations of motion have a singularity at every passage through a collinear configura- 
tion (Van Kampen and Wintner, 1937, page 166). 

In Section 11, we apply the results of the reductions to discuss relative periodic 
solutions. In Section 12 we detail a practical algorithm for constructing relative periodic 
solutions while working with non-rotating heliocentric coordinates. This shows in 
particular that after all the periodicity conditions have been satisfied, a single param- 
eter remains free; this explains that the periodic solutions form a one-parameter 
family. Finally, in the last section, we describe our numerical results consisting of two 
families. Both families were derived from Keplerian limiting cases (Arenstorf, 1967 
and 1968). At the moment the end of the two families is not yet known. Several periodic 
orbits of the two families have binary close approaches and a regularization would be 
desirable to contil~ue the investigations. We have already started the study of the 
characteristic exponents of the orbits. These results will be published later. 

2. Definition of the Problem 

We consider the classical planar general three-body problem with non-zero masses 
too, ml, and m2. The gravitation constant is assumed to be unity. In a barycentric 
inertial frame of reference, the Lagrangian of the system may be written as 

2 

~o = �89 E m,(~ +//~) + U, (1) 
i=O 

where the potential function is* 

U m o m l  mom2 mlm2 
= I t �9 (2) 

/"01 /"02 r l  2 

Here, we use the notation (0, 1, 2) rather than the more standard notation (1, 2, 3) be- 
cause this will be more convenient later for the introduction of the heliocentric co- 
ordinates (see Figure 1). The first integrals of the center of mass can be used to reduce 
the number of degrees of freedom from 6 to 4 units. A convenient practical way of 

* In some of the following sections, we use the notat ion rx for rox and r2 for ro2. 



ON RELATIVE PERIODIC SOLUTIONS OF THE PLANAR GENERAL THREE-BODY PROBLEM 441 

0 
2 

0 

p] = r 2 = r02 Y 

P0 = M12x,g _~ 

q'l 
r 

P2 rl r01 

m 
0 

F i g .  1. T h e  b a r y c e n t r i c  c o o r d i n a t e  sy s t em.  

reducing the number of degrees of freedom from 6 to 4 is by using the heliocentric 
coordinate system as will be shown later. 

Let us use a simple vector notation to express the equations of motion. The bary- 

centric position vectors are r~ ( i - 0 ,  1, 2) and the corresponding equations of motion 
are the twelfth-order system. 

r~ - -  r j  r i - -  r k 
~ = - m j  r~. mk 3 ' ( 3 )  

t j  rik 

where i, j,  k take on the values 0, 1, 2 in a circular permutation. The fact that the 
coordinates are barycentric can be expressed by the constraint 

2 

m~r~ = O. 
i = 0  

(4) 

The above system (3) of order 12 can be easily reduced to a system of order 8 by 

using the heliocentric coordinates. However, we will first show (in the next four 

sections) how this system can be reduced to order 6 by using the relative barycentric 

coordinates. Later we will also show that a similar reduction to order 6 can be made 
with the use of heliocentric coordinates. 
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3. The Equations of  Relative Motion 

If we are only interested in the relative positions of the three masses, it is then indicated 
to use as variables the three relative position vectors ~ defined by 

~i = rk - rj (5) 

and constrained by 

e, = O. (6) 
i 

The barycentric coordinates r~ can be derived from the relative coordinates ~ by the 
linear relations 

( m k ~  j - -  mj~k) 
rz = , (7) 

m 

where m is the total mass (mo + ml + m2) of the system. It is now easy to obtain the 
relative equations of motion for the three particles: take the second derivatives of (5) 
and substitute (3) in the right-hand sides. We obtain the remarkably simple result 

~i = - m ~  + mi g=o ~:~" (8) 

The quantities in the denominator are the distances between particles: 0~= let[ =rkj. 
In what follows we will develop the differential equations for the lengths of the three 

sides of the triangle. In other words, we will show that the second-order derivatives 
~o, 01 and ~z can be expressed in terms of Qo, Q1, Q2, their first derivatives and the 
angular momentum only. This sixth-order system of differential equations represents 
the so-called relative three-body problem. Before we go into details, we collect some 
important geometric relations in the following section. 

4. Some Preliminary Definitions 

We will represent by Oj the three exterior angles of the triangle; ( j=0 ,  1, 2). In other 
words, 0j is the angle between the vectors mimj and mjmk (see Figure 1). We have then 
the well-known laws of sines and cosines: 

= + - 2QjQ  c o s  0 , ,  (9) 

cos 0i = (Q~ - Q~ - Q2) (10) 
( 2 e j e k )  ' 

sin 0i = 2AQ~ (11) 

where A is the area of the triangle. 
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We will also use the three angles ~bi of the vectors 0~ with the x-axis. The ~ and r/ 
components of the vector ~ are then (see Figure 1): 

4 t ,  - = c o s  (12a) 

r/k - r/s -- 0~ sin q~. (12b) 

The constraints (6) between the three vectors 0~ can now be written as 

0i cos ~b~ = 0,  (13a) 
i 

O~ sin ~b~ = 0. (13b) 
i 

We also have the following relations between ~b~ and 0~, (except eventually for a differ- 
ence of 270: 

(14) 

The angular momentum integral is well known to be the constant 

m , ( ~ , O , -  r/,~,) = C, (15) 
i 

or in terms of the variables O~ and ~bi 

n,e2ck, = C, (16) 
i 

where the n~ are the associated masses msmk/m (see Broucke and Lass, 1973). We will 
see that the most important result of the present section will be an expression for the 
derivatives 4;~ in terms of the distances 0~ and their derivatives. In order to obtain this 
expression, we first differentiate (12a) and (12b) and we join the angular momentum 
integral to the result 

Q, cos ~bi .~, = - ~  ~, sin ~bi 
i 

(17a) 

Q, sin ~,.d?, = + ~ O, cos ~b, 
i i 

(17b) 

= c .  (17c) 

We consider the above Equations (17) as a linear system with three equations and 

three unknowns 4;0,4;1,4;2- By solving this system we obtain the following expressions 

for the 4;i 

C sin 0i + nsQs[~i cos 0s + ~s cos 0i + 0k] - 

- nkQk[~i COS Ok + Ok COS 0i + ~S], (18) 

where as usual i, j, k are a circular permutation of 0, 1, 2 and where the factor ~ is the 

determinant of the system (17) 

2JA 
6 = t )'QoQ~Qz'" (19) 
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Here, the symbol J is used for the polar moment of inertia 

J =  ~mir  2. (20)  

As we said before, our important result is the expression (18) for q~ in terms of the 
sides of the triangle and their derivatives. In the formula (18), the sines and cosines 
of the exterior angles are assumed expressed in terms of the sides 0i by using (10) and 
(11). 

5. Equations of Motion in & 

Let us start from the definition 

Q~ = ~i" ~i , (21) 

and differentiate twice 

e,~, + O, ~ = ~, .~,  + ~, .~ , .  (22) 

The first term on the right side of (22) is the square of the velocity 

�9 2 ~ 2 2 2  (23) 

The Equation (22) can thus be written as 

Qi 
(24) 

where ~ is given by the Equations (18). This result will be further modified by re- 
placing ~i by the expressions that were given in (8) and by using the classical formulas 
for the dot products of two vectors 

e , . e j  = e , e j  co s  ok = -~(d  - ~ - @ .  (25) 

We find then the following result: 

m~ [Qkz-- 0~-- Q 2 Q2 -- Q2-- Qkz ] ~Ji-- (~) / (~i)2  (mj -a t- mk) ~ 3 + �9 (26) 
Qi O~ 2Q~ Qj O~ 

These equations are the final form of the equations of motion of the relative three-body 
problem. They are a sixth-order system in the unknowns Qi and 0i. Solving this system 
determines the relative positions of the three particles of the three-body problem�9 The 
quantity q~ in (26) is expressed in terms of Q~, 0~ by means of the Equations (10) and 
(18) .  

6. The Absolute Positions of the Particles 

It is interesting to show that, whenever the relative positions of mo, m, and m 2 have 
been obtained by integrating the differential equations of the previous section, it is 
then possible to obtain the absolute positions of too, rn, and m 2 by a single additional 
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quadrature or by integrating a single additional first-order differential equation. The 
only new variable that has to be added to the system is an angle ~b, defined by (see 
Deprit and Delie, 1961, page 8) 

, (  = ~ ~o + ~,  + ~a) (27) 

This definition implies the following simple relation between the angles ~b, ~b~ and 0~: 

~ = ~ + k(0j - 0~). (28) 

It is now a rfiatter of relatively simple algebra to obtain the derivative of ~b: 
derivative in the Equation (27) 

take the 

= k(4o + 4;~ + ~ ) ,  (29) 

and replace the angles q~ by the expressions which have been obtained in (18). After 
some lengthy manipulations we find 

C 
4; = s Z A,O,, (30) 

i 

where the three coefficients A~ are functions of the distances 0~ between the particles 
only (Deprit and Delie, 1961, page 9) 

1 
= 3Q, (njaa - nka2)]. (31) A, [(3n,Q 2 - j)(Q2 _ a2) + 2 a 

12JAQ~ 

We see thus that not only the relative equations of motion (26) are completely free 
of angular quantities in their right-side member but also the differential Equation 
(30) for ~b. Only the distances and their first derivatives are present. The present 
developments also show that the planar three-body problem has been reduced here 
to a system of order seven; more precisely to a system of order six (the relative three- 
body problem) and one quadrature. This result is an important property of the three- 
body problem in relation with the existence of relative and absolute periodic solutions. 
We defer the detailed discussion of this problem to Section 11, as we first want to 
develop the heliocentric reduction to order 6 of the three-body problem (Sections 7, 8, 
9 and 10). 

7. Heliocentric Coordinates 

We will now introduce a new system of coordinates centered at mo and refer the two 
other particles ml and m2 to mo. The coordinates of mi (i= 1, 2) relative to mo will be 
designated by (xi, yi). Note that the new coordinate system has a fixed orientation, 
but it is not inertial, due to its moving origin. The new coordinates (xi, y~) will be 
called heliocentric for convenience, as this is often done in the study of the solar 
system where mo represents the Sun and mi the planets. 
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The transformation equations are given here only for the 
equations being completely similar). 

xt = ~ - ~o; i = 1, 2; 

2 

0 = Z mi~i .  
i = 0  

x-components (the y- 

(32a) 

(32b) 

The last of the two equations is one of the integrals of the center of mass. The above 
system forms a linear system in the three coordinates ~i and can obviously be solved 
to give the barycentric coordinates as functions of the heliocentric ones (see Wintner, 
pages 257-258). 

~o - m mix1,  (33a) 
1 = 1  

~j = x j  m mix1,  j -- 1, 2. (33b) 
1 = 1  

The Lagrangian in heliocentric coordinates 
substituting (33) in (1): 

has the following form, obtained by 

1 

2m 
[ml(mo + m2)(x 2 + J) 2) + mz(mo + ml)(22 z + 3~22)] - 

m l m z  (2~22 + YlPz) + U. 
m 

(34) 

The heliocentric equations of motion derived from the Lagrangian (34) are well 
known to be 

( _ 57i = --(mo + m~)x1 xj xi 
r1 + m j  r~j (35) 

where i = 1, 2 and j #  i. The equation in y is similar. The numerical results that will be 
described later have been obtained by numerically integrating the Equations (35) with 
the well-known recurrent power series techniques (Broucke, 1971). 

8. H e l i o c e n t r i c  P o l a r  Coord ina te s  

We will now introduce polar coordinates (ri, ~bi), ( i= 1, 2) for each one of the masses 
mi, with the usual definitions (see Figure 2).* 

X i - -  r i COS ~ f  

Yi = ri sin ~bi, i = 1, 2. (36) 

* The angles ~bl and ~b2 are not the same as the angles ~bl and ~b2 used in Figure 1 and Sections 4 
through 7. No confusion will result, as the formulations of Sections 4 through 7 will not be used in 
what follows. 
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Fig. 2. The heliocentric coordinate system. 

We will see later that there is a serious advantage in using these polar coordinates. In 
fact, this will help us to detect an ignorable (cyclic) coordinate in the new Lagrangian. 
The transformation of the Lagrangian (36) is a matter of elementary algebra. 

1 ~ =  
2m 

[ml(mo + mz)(~ 2 + r~6 2) + m 2 ( m o  + m l ) ( l  ;2 + r262)] + U -  

mxm2 [(fxf/ + rlrjplJp2)cos (q~z - q~x) + 
m 

+ (r17241 - rzr14z)sin (~2 - ~1)1 (37) 

Here, the potential function U is still given by the expression (2); however, we assume 
that the distance rxz is expressed in terms of the polar coordinates (r~, q~). 

r22 = r 2 + r 2 - 2r l r2  cos (q~2 - q~l). (38) 

9. Hel iocentric  Sum-Difference Coordinates 

We see now that the new Lagrangian (37) contains the angles ~2 and q~l only in the 
form of a difference ff2-q~1. We take advantage of this observation to replace q~ and 
q~2 by two new coordinates D and S: 

D = q~2 - q~l, 

S=qh +qh. 
We obtain then a new equivalent Lagrangian with 4 degrees 
variables r~, r2, D and S. However, only the difference D is present in the Lagrangian, 
but not the sum S. In other words, S is an ignorable or cyclic coordinate and it 

generates the first integral 

(39a) 

(39b) 

of freedom and with 

OS - if- L04~ + ~b2_l const. (40) 
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Some elementary algebraic operations also show that the integral (40) is in fact the 
angular momentum integral (written in polar coordinates): 

mx(mo + m2)r2~ + m2(mo + m~)r~r 

- mlm2[(rli'2 - fir2)sin (~b2 - r + rxr2S cos (r - r = mC. 

(41) 

10. The Relative and the Absolute Three-Body Problem 

It is easy to see the simple geometrical meaning of the two angles D and S. First of all, 
D is the inner angle of the triangle mo, m~, mz at too. The angle D and the two sides 
rl and r2 completely determine all of the elements of the triangle. In other words, 
they determine the relative positions of the three particles. 

The angle S on the other hand determines the position of the triangle with respect 
to the coordinate system. This is easily verified because S/2 is the angle between the 
x-axis and the bisectrix of r~ and r2. As was said before, the angle S is an ignorable 
variable. This fact can thus be used to reduce the number of degrees of freedom of the 
Lagrangian (37) from 4 to 3. First of all, q~ and q~a have to be replaced by D and S by 
using 

q~2 = (S + D)/2, (42a) 

dp, = O ) / 2 .  (42b) 

Next, the derivative S can be eliminated from the Lagrangian by solving the first 
integral (41) for ~ and then constructing the so-called Routhian in only three co- 
ordinates (rl, r2, D) see (Whittaker, page 55). 

The system of equations of motion (of order 6) derived from this Routhian defines 
the relative planar three-body problem. It is thus represented by three second-order 
differential equations in the three coordinates (rl, r2, D) defining only the relative 
positions of the three particles. This is a conservative Hamiltonian (or Lagrangian) 
system having only one first integral (the energy integral). The constant C of the 
angular momentum is to be considered as a parameter which is present in the equations 
of motion. 

The coordinates r~, r2 and D do not contain sufficient information to determine the 
absolute positions relative to a coordinate system with fixed orientation. The supple- 
mentary angle S has to be computed for this purpose. The angle S can be obtained by 
a simple quadrature after the integration of the system in r~, r2 and D has been com- 
pleted. To perform this quadrature, (41) has to be solved for ~r Alternately, we can 
consider the three second-order differential equations in r~, r2 and D, together with 
the first-order equation in S, as a single simultaneous system, of order seven. This 
seventh-order system of differential equations defines the absolute planar three-body 
problem. 

In the light of what has been said above, we may represent the equations of motion 



ON RELATIVE PERIODIC SOLUTIONS OF THE PLANAR GENERAL THREE-BODY PROBLEM 449 

of the planar three-body problem in the following symbolic form: 

f l = f l(ri, D, i'~, D, m i, C) 
iz2 = f2(r~, D, ih, D, mj,  C) 
b = fa(r,, D, i',, D, mj,  C) 

= f4(r~, D, ~ , / ) ,  m j, C) 
I I I I I  

(43a) 

(43b) 

where i= 1, 2 and mj stands for too, ml and m 2 . The equations in the upper rectangle 
define the relative three-body problem while the equations in the complete rectangle 
represent the absolute three-body problem. The Equation (43b) for ~r is the angular 
momentum integral (41). 

11. Absolute and Relative Periodic Solutions 

It is a completely different task to find periodic solutions for the relative three-body 
problem and for the absolute three-body problem. Relative periodic solutions will 
consist of six periodic functions of time @1, r2, D and their first derivatives) while 
absolute periodic solutions consist of seven periodic functions with the same period, 
as the coordinate S now has to be added. It is easy to see that the absolute periodic 
solutions are a subset of the set of relative periodic solutions. Let us assume that a 
relative periodic solution has been found with period T. In other words, this is a 
periodic solution of the sixth-order system (43a). By substituting these periodic 
functions in (43b) we obtain aperiodic function for ~r Let us thus represent this periodic 
function by a Fourier series with constant coefficients Ao, A~ and B,: 

O0 

S = A o +  
i = l  

(Ai cos/~t + Bi sin/~t), (44) 

where ~ is the mean motion 2felT. Upon term by term integration of (44), we find the 
following expression for the angle S: 

S = So + Aot + ~ 1 (A, sin iat - B, cos iat). (45) 
l = l  

This solution generally does not result in absolute periodic motion, due to the presence 
of the secular term Aot. Because of this secular term, during a complete relative period 
T, the angle S has increased by a quantity ~b= AoT; (this angle is not the same as the 
one defined in (27)). 

There will be absolute periodic motion only in the case where the angle ~b= AoT is 
commensurable with 2n: 

~b = AoT = p- 2~z. (46) 
q 
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By integrating such a periodic solution for q complete relative periods, we obtain an 
absolute periodic solution with absolute period qT. We will later show several numeri- 
cal examples of this principle, corresponding to small values of p and q. 

In general, during a complete period of a relative periodic solution, the whole system 
rotates by the angle ~b = AoT, called the rotation angle of the solution. It would thus be 
appropriate to represent these periodic solutions in a uniformly rotating coordinate 
system, with angular velocity Ao=q~/T. The angular velocity Ao defines the natural 
rotating coordinate system for the periodic solution under consideration. Let us note 
that this angular velocity is different for each relative periodic solution. We also note 
that the rotation angle ~b-AoT can be considered as an intrinsic parameter of the 
periodic solution. In particular, it is independent of the scaling of the solution. 

12. Symmetric Periodic Solutions 

In the present study we will discuss some numerically discovered symmetric periodic 
solutions of the planar three-body problem. Because of the large volume of numerical 
calculations that is involved in this research, we have restricted ourselves to symmetric 
solutions only. The symmetry properties of these solutions have been discussed in 
more detail by Broucke and Boggs (1975). The symmetry theorem states (in helio, 
centric coordinates) that 

If both particles ml and mz cross a fixed axis, passing through mo (at the origin), 
at the same time and at right angles, the orbits of ml and/T/2 are symmetric with 
respect to this axis. 

Whenever the conditions of this theorem are satisfied, we say that we have a sym- 
metric intersection with the symmetry axis. 

It is possible to use the symmetry theorem to find a sufficient periodicity condition 
(see Broucke and Boggs, 1975). The periodicity criterion has been stated for the case 
where the x-axis is the symmetry axis. It can easily be generalized to the case of two 
arbitrarily oriented symmetry axes. 

If a solution has two consecutive symmetric intersections at times t = 0 and t -  T/2, 
the solution is relative periodic with period T and the rotation angle is twice the 
angle between the two symmetry axes. 

The symmetry theorem is expressed here in terms of heliocentric coordinates and an 
illustration taken from our family R of periodic solutions (see Section 13) is given in 
Figure 3a. The symmetry theorem is equally valid in barycentric coordinates, but all 
three orbits (rather than two) will have perpendicular intersections with the symmetry 
axis as is shown in the example taken from our family A given in Figure 3b. 
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Fig. 3. The symmetry theorem in heliocentric and in barycentric coordinates. 

Let us now briefly describe the numerical implementation of this periodicity con- 
dition. The orbits will only be integrated for a half period, T/2,  from one symmetry 
axis to the next. The initial conditions, at the first symmetric intersection, are of the 
general form: 

( x l ,  Yl  = O,/el = O, Yl), (x2, Y2 = 0, x2 = 0, Y2). 

Thus, four of the eight initial parameters are always zero, in order to have the initial 
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points on the x-axis, and the velocity vectors perpendicular to it. Among the four other 
parameters, one may be kept fixed (x~, for instance) in order to fix the scale of the 
solution (see Broucke and Boggs, 1975). There remain thus three parameters ( ~ ,  x2,  

J~2) to be varied in order to satisfy the periodicity criterion. It is easy to see that the 
periodicity criterion can be expressed analytically by exactly three conditions. The first 
condition states that at the second symmetric intersection the three particles must be 
at conjunction: ml and m2 are on the same radius vector passing through the origin 

m o: 

y l x2  - yax l  = 0. (47) 

The two other conditions express the right-angle requirement. The two velocity vectors 
must be perpendicular to the symmetry axis: 

x121 + Y~Pl = 0, (48) 

X2-~2 Jr" Y2Y2 --  0 .  (49) 

As a conclusion we see that we have three free initial parameters in order to satisfy 
three f i na l  conditions (47), (48) and (49). We assume here that the half-period 7'/2 is 
known in advance but this is generally not the case. In the numerical calculations that 
were performed, we left the period arbitrary. We made the numerical integrations up 
to a point of conjunction where the condition (47) is automatically satisfied. We reduce 
in this way the number of conditions from 3 to 2 (Equations (48) and (49)), and we 
perform differential corrections on two initial parameters, for instance, x2 and Y2. 
As was said above, Xl is kept fixed in order to avoid the scale ambiguity. The parameter 
fil can also be kept fixed. However, if fi~ is varied and the differential corrections re- 
peated, a new relative periodic solution is obtained. This shows that if symmetric 
relative periodic solutions exist, they form one-parameter families in the same way as 
in the circular restricted three-body problem. The differential correction process 
needed to find the periodic solutions requires the inversion of a 2 by 2 matrix of partial 
derivatives. The most economical way of obtaining these partial derivatives is by 
integrating two varied orbits after each nominal orbit. It is not necessary to integrate 
the variational equations for this purpose. Numerical integration of the variational 
equations is useful to obtain the monodromy matrix and the stability information. 

13. Two Families of Pseudo-Circular Orbits 

We describe here two families of relative periodic solutions with equal masses mo= 
= m l = m 2 = � 8 9  To find the approximate initial conditions for the first member of the 
family, we have used the ideas of Arenstorf (1967, 1968) where the existence of certain 
types of periodic solutions is proved. These solutions essentially consist in double 
Keplerian motion: there is a pair of particles that move in approximate Keplerian 
motion around each other and at the same time, this binary system moves around the 
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third particle in an approximate Keplerian motion with much larger radius. Two 

different families are a priori possible, according to whether the two Keplerian 
mot ions  are in the same direction or not. Our numerical investigations cover both 
types of motion and this results in two one-parameter families of relative periodic 
orbits. In family A, mo is the isolated body and ml, m2 are the binary system. The 
motion of mo and the binary system around the general center of mass (the origin of 
the coordinate system) is direct but the components ml and m2 of the binary system 
move around their center of mass in retrograde motion. In the second family which has 
been called R,* m~ is the isolated body in a direct motion and the binary system (mo, 
m2) is also in direct motion around their own center of mass. 

This situation is reminiscent of two known families of periodic orbits in the re- 
stricted three-body problem: Str6mgren's Class g (Szebehely, 1967, pages 466-471) or 
Broucke's Class BD (Broucke, 1968, page 41) correspond to our present family R. On 
the other hand, Str6mgren's Class f of retrograde orbits (Szebehely, 1967, pages 463- 
466) or Broucke's Class Ax (Broucke, 1968, page 40) are the analogue of our present 
family A. However, at this point this is simply an analogy rather than a connection or 
transition between the families. We will mention later some real connections between 
our families and the known orbits of the restricted problem. 

As both families are analytical continuations of circular Keplerian motions, it is 
easy to obtain approximate initial conditions to start these two families. If we assume 
that a binary system m~-t-m2 moves around mo on a circle with preassigned radius a, 
the velocity V, in this circular motion is given by 

V,Z= 
mo + m~ + m2 

a 

In the same way, if we assume circular motion of m2 around ml, with arbitrary 
radius b, (b~a), the circular velocity V~ is given by 

/711 -1-- /112 

b 

The four Keplerian quantities a, b, V,, Vb contain all the information that is needed 
to form the approximate initial conditions of the numerical integration of the exact 
three-body equations of motion. These initial conditions are improved by the usual 
linear differential correction procedures. 

If we assume that b is much smaller than a, the period T of such a relative periodic 
solution will also be small, and so will the rotation angle q~. In fact, when b tends to 
zero, T and ~b also tend to zero. The initial orbit that has been computed numerically 
corresponds to a value ~b/2 =0.058 78 rad for our retrograde family A and the value 
~b/2=0.1978 rad for our direct family R. In both cases we consider the rotation angle 

* The nomenclature A and R results from the fact that we have obtained several families of periodic 
solutions, all designated by one letter of the alphabet. Some of the other families will be documented 
later. 
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~b as the parameter of the family. We give ~b/2 in the tables of heliocentric initial con- 
ditions rather than ~b, because only half-orbits are computed for symmetric orbits. For 
each family about 200 orbits were computed, but to limit space we give in Tables I 
and II only about 12 orbits per family, at more or less equidistant intervals in ~b. It so 
happens that for both families, q~ is monotonically increasing, but this should not be 
considered as a general rule. The final values of ~b/2 that have been reached up to now 
are 3.1428 for family A and 3.8868 rad for family R. The two families could be ex- 
tended further, but this work is still in progress. Both families are far enough de- 
veloped for the study of several important properties. In particular the range of the 
rotation angle ~b is such that a large number of absolute periodic solutions can be 
extracted from both families. More precisely, 16 absolute periodic solutions have been 
interpolated with high precision in family A and 13 in family R. The initial conditions 
are in Tables III and IV. 

TABLE I 

H e l i o c e n t r i c  i n i t i a l  c o n d i t i o n s  o f  f a m i l y  A o f  r e l a t i v e  p e r i o d i c  o r b i t s  

xl Pi xz Pz T/2 ~o/2 

12.779 563 528 
3.337 554 139 
1.947 496 097 
0.723 947 921 
0.299 397 148 
0.281 166 859 
0.246 359 384 
0.219 966 727 
0.194 899 309 
0.160 055 405 

0.708 965 414 
0.935 709 961 
1.060 O72 707 
1.392 262 949 
2.023 806 412 
2.087 842 671 
2.231 887 968 
2.365 624 237 
2.518 977 519 
2.792 300 992 

13.665 328 929 
4.293 505 538 
2.992 153 817 
2.175.486 553 
2.264 265 773 
2.275 396 922 
2.299 125 851 
2.319 847 324 
2.342 234 591 
2.378 409 085 

0.158 709 982 
0.095 702 925 
0.243 708 801 
0.619 230 096 
1.164 053 051 
1.206 866 276 
1.296 813 903 
1.373 902 856 
1.456 700 009 
1.594 811 084 

3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 

O.065 367 975 
0.424 057 748 
0.824 023 787 
2.039 305 674 
2.928 369 964 
2.964 730 859 
3.028 711 256 
3.071 041 555 
3.105 199 113 
3.141 744 329 

TABLE II  

H e l i o c e n t r i c  i n i t i a l  c o n d i t i o n s  o f  f a m i l y  R o f  r e l a t i v e  p e r i o d i c  o r b i t s  

X1 Pl x2 P2 T/2 ~o/2 

5.884 007 452 
3.949 711 509 
2.628 488 721 
1.564 741 216 
1.126 864 822 
1.010 415 523 
0.910 107 163 
0.866 404 631 
0.819 911 082 
0.785 539 889 
0.770 364 599 
0.762 635 804 

-0 .047  897 763 
0.024 944 693 
0.104 539 871 
0.180 379 728 
0.078 541 963 

- 0.074 519 903 
-0 .345  157 796 
-0 .547  041 881 
-0 .906  826 802 
- 1.463 648 761 
- 2.030 500 683 
-2 .757  603 773 

-0 .837  181 789 
-0 .810  458 734 
-0 .763 570 802 
- 0.640 618 480 
-0 .437  071 336 
-0.311 434 477 
-0.181 149 814 
-0 .128 621 515 
-0 .079  497 279 
-0 .046  425 097 
-0 .030  845 353 
-0 .020  410 126 

-0 .893  590 331 
-0 .910  816 552 
-0 .947  015 555 
- 1 . 0 8 4  553 287 
- 1.469 380 211 
- 1.849 074 104 
- 2.544 658 713 
- 3.070 106 005 
- 3.965 217 822 
-5 .247  907 056 
-6 .477  510 143 
- -  7.999 088 844 

3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 654 
3.141 592 645 
3.141 592 654 
3.141 592 654 
3.141 592 654 

0.198 880 363 
0.346 816 619 
0.605 205 704 
1.226 100 549 
2.004 733 148 
2.433 151 276 
2.955 495 807 
3.218 008 559 
3.505 194 342 
3.721 287 165 
3.823 797 052 
3.886 840 178 
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TABLE III  

H e l i o c e n t r i c  i n i t i a l  c o n d i t i o n s  o f  16 a b s o l u t e  p e r i o d i c  o r b i t s  o f  f a m i l y  A 

x~ .f,~ x2 P2 T/2 p/q 

0.160 231 433 2.790 692 952 2.378 210 758 1.594 022 431 
1.000 000 000 1.689 116 798 1.300 821 227 0.190 647 546 
1.000 000 000 1.634 630 160 1.344 911 402 0.231 949 084 
1.000000000 1.571 443 159 1.408 590 793 0.277 741 508 
1.000000 000 1.495 533 832 1.510 089 176 0.329 531 844 
1.000 000 000 1.399 222 655 1.701 970 040 0.390 233 414 
1.000 000 000 1.265 852 825 2.227 877 156 0.469 644 019 
1.000 000 000 1.450 658 441 1.588 297 336 0.358 469 919 
1.000 000 000 1.338 820 955 1.884 122 621 0.426 138 498 
1.000 000 000 1.176 872 952 3.128 698 450 0.533 630 860 
1.000 000 000 1.316 108 680 1.972 417 081 0.439 493 002 
1.000 000 000 1.208 241 335 2.701 147 795 0.508 159 639 
1.000 000 000 1.145 060 889 3.864 798 318 0.566 656 486 
1.000 000 000 1.223 349 888 2.548 687 677 0.497 321 994 
1.000000000 1.129 973 353 4.473 155 821 0.587 118 231 
1.000 000 000 1.157 691 647 3.514 995 987 0.552 307 896 

3.141 592 654 
3.851 082 150 
3.955 178 441 
4.105 508 010 
4.344 968 845 
4.796 709 493 
6.028 134 049 
9.058 538 840 

10.448 244 359 
16.304 771 638 
16.292 577 034 
21.412 303 043 
29.857 306 670 
27.116 185 427 
46.028 999 271 
45.436 082 836 

1/1 
1/7 
1/6 
1/5 
1/4 
1/3 
1/2 
2/7 
2/5 
2/3 
3/7 
3/5 
3/4 
4/7 
4/5 
5/7 

TABLE IV 

H e l i o c e n t r i c  i n i t i a l  c o n d i t i o n s  o f  13 a b s o l u t e  p e r i o d i c  o r b i t s  o f  f a m i l y  R 

Xl  P ~ x2 P2 T/2 p[q 

0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 
0.777 401 091 

- 0 . 5 1 0  832 077 
0.214 517 863 
0.258 226 141 
0.234 494 465 
0.199 270 688 
0.162 303 686 
0.126 080 857 
0.061 216 289 
0.254 184 039 
0.249 125 087 
0.134 877 460 
0.246 925 212 
0.161 627 621 

- 0 . 1 2 6  551 669 
- 0 . 3 2 9  939 662 
- 0 . 3 0 0  691 126 
-0 .261  744 816 
- 0 . 2 3 0  872 977 
- 0 . 2 0 6  954 546 
-0 .188  063 538 
- 0 . 2 9 0  493 543 
- 0 . 3 2 0  515 292 
- 0 . 2 8 0  329 148 
-0 .313  838 514 
-0 .325  773 812 
- 0 . 3 2 0  965 116 

- 3.081 358 822 
- 1.580 023 406 
- 1.554 882 578 
- 1.633 510 799 
- 1.724 137 060 
- 1.812 692 424 
- 1.896 407 206 
- 1 . 8 2 7  632 183 
- 1.538 554 162 
- 1.590 658 229 
- 1.701 242 021 
--1.542 454 708 
- 1.658 251 145 

2.613 279 379 1/1 
2.852 382 191 1/2 
2.780 294 241 1/3 
2.698 036 144 1/4 
2.633 549 487 1/5 
2.583 704 945 1/6 
2.544 368 993 1/7 
5.612 508 053 2/3 
5.648 075 401 2/5 
5.474 118 981 2/7 
8.510 759 659 3/5 
8.510 195 359 3/7 

11.381 992 217 4/7 

As was said above, the orbits are nearly circular for both of these families. In both 
families the isolated body (mo in family A and ml in family R) follows a direct, almost 
,circular path. Now, if we represent the motion in a coordinate system which also 
rotates in a direct way with the same average angular velocity, we can observe that 
with respect to this rotating frame, mo (family A) or ml (family R) is hardly moving. 
In fact, these bodies describe an orbit of very small size, visible as a point on Figures 
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Fig. 4. Relative periodic orbits of family A in a rotating coordinate system. 

4a and 5a. This fact is mostly true for the first orbits of each family. It is still true for 
the last orbits, although the orbits are now noticeably larger. In family A (Figure 4d), 
mo describes a small figure-eight orbit; in family R, m l describes a small oval path 
perpendicular to the x-axis (Figure 5d). Also we observe that for both families the two 
bodies forming the binary system travel on the same path in the rotating coordinate 
system. This property, which occurs frequently in the three-body problem with equal 
masses, has been commented on by Broucke and Boggs (1975). For both families we 
observe a close approach between two bodies towards the end of the family. A binary 
collision orbit will probably develop and a regularized program is necessary to con- 
tinue these families. 

Some typical orbits in the nonrotating frame of reference are given in Figures 6, 7 
and 8. As stated previously, in the rotating coordinate system the two bodies forming the 
binary pair travel on the same curve. A similar property exists for the absolute periodic 
solutions with commensurability ratios p/q with even p. This property holds in the 
barycentric as well as the ~heliocentric nonrotating frame. 
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Fig. 5. Relative periodic orbits of family R in a rotating coordinate system. 

Solutions 1, 6 and 40 of our previous article belong to our present family A (with 
commensurability ratios 1/2, 1/5 and 1/3); (Broucke and Boggs, 1975). 

In both families, we have an absolute periodic solution with rotation angle 2n, or 
with commensurability ratio 1/1. These two solutions are remarkable illustrations of 
the phenomenon of gravitational interplay (Szebehely, 1971) between two or all three 
of the bodies. As shown in Figure 9, the 1/1 case of family R is relatively simple be- 
cause this is still a case of a binary system revolving about a more or less undisturbed 
third body. However, the orbit with ratio 1/1 in family A is a more remarkable case 

because we have interaction (interplay) between the three bodies; ml and m2 describe 
similar orbits around mo. All three orbits are approximately ellipses of the same 
eccentricity. At t--0, mo and ml have a close approach, while at t=T/2, mo and m2 
have a close approach along a similar path (see Figures 10a and 10b). The orbits are 
symmetric with respect to the x-axis and the y-axis. 

We also found that the orbit A. 1/1 can probably be considered as an extension of a 
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Fig. 7. Absolute periodic orbits of family A in a heliocentric coordinate system. 

known orbit of the elliptic restricted three-body problem of our family 8A (see Broucke, 
1969, page 51), which is itself an extension of class g of periodic orbits of the Str6mgren 
problem. Indeed, by starting from the initial conditions of the elliptic problem (family 
8A, masses mo=�89 ml =�89 and m2=0), we can obtain a periodic solution with masses 
mo=0.499, m1=0.499 and m2--0.002 (Figures l la and l lb), which is completely 
similar to the solution with three equal masses. The present solution has some other 
interesting properties related to the stability and the characteristic exponents. These 
will be described later. 

It appears certain that the orbits of our family R are related to the family of solu- 



460 R. BROUCKE 

a 

BARYCENTR 
R.1/z 

Y 
b 

BARYCENTRIC I Y R.2/5 ~ ~  

m 2 m 

0 X 

m I 

C 

BARYCENTRIC 
R2.' 

Fig. 8. Absolute periodic orbits of family R in a barycentric coordinate system. 

0 

BARYCENTR 
R.1/1 

Y 
b 
HELIOCENTRIC 
R. I / I  Y 

m 0 
0 X 

m 
1 

m 2 

m 

m 

0 

X 

Fig. 9. The 1/1 resonance casein family R. 
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Fig. 11. The 1/1 resonance case with masses 0.499, 0.499 and 0.002. 

tions recently computed by Hadjidemetriou (1975). These orbits are continuations of 
Str6mgren's class g. In any way the transition from the restricted to the general three- 
body problem is a complex phenomenon and more research in this area would be 
appropriate. 
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