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A manifestly covariant relativistic generation of the Lenz vector for the relativ- 
istic Kepler problem is constructed. The corresponding dynamical group for the 
bound state problem is SO (4,l) . 

It is well known’ that the nonrelativistic quantum mechanical Kepler problem can be 
treated by studying a symmetry group which is larger than the explicit SO( 3) symmetry of the 
(relative motion) Hamiltonian 

where a is the fine structure constant, r= 
m 

(x -x ) is the distance between the particles, M 

is the reduced mass of the two body system, and p= (M2p1 -M1p2)/(MI+M2) is the relative 
momentum. This larger group (for the bound states, where H < 0) is SO( 4), whose generators 
are the angular momentum L and the Lenz vector is 

*= -g &(LXp+pXL)+; J I I 
. (2) 

The vector A is a constant of the motion (in the corresponding classical problem it is 
directed along the major axis of the elliptic orbit). Its components have the commutation 
relations 

[Ai 9 Aj] =iEijkLk (3) 

It was recently shown2 that a relativistically manifestly covariant form of the Kepler 
problem can be constructed with (relative motion) Hamiltonian [we use metric ( - + + + )] 

(4) 

wherefl= (M&-M&)/(M, +M,), m=MIM2/(MI +M,) are the relative energy momen- 
tum and reduced mass of the two body system, and p = (xl-x,) 2 - (ti - t2)2 is the invariant 
(spacelike) distance between the particles. 

In the nonrelativistic limit rl + t2, so that p -+ r ; the relative energy E= (M2t, -M,t,)/(M, 
+ M2), where M, and M2 are the masses of the individual particles, also vanishes and hence K 
goes over to the form ( 1) . 

The bound state spectrum {K’} of the operator (4) was shown to be precisely equal to the 
energy spectrum of the nonrelativistic problem. Since, however, the total Hamiltonian is 
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(5) 

where P=pi’+F$, M=M, +M2, and K,is a constant that can be evaluated2 at the ionization 
point as -M/2, we see that in the center of mass frame 

E= ,/m. (6) 

If the coupling is such that the excitations K’ are small compared to M, then 

(7) 

where the last term corresponds to relativistic corrections. 
This problem was solved by studying the differential equation 

Klj= K’t/b. (8) 

One may ask whether there exists, in the relativistic case, an analog of the Lenz vector (2). 
It is straightforward to show, using the commutation relations 

[fl, ~‘1 = it?, 

that the vector 

A,,= 
J-l 

-g & (M,.~v+$‘M,)+~ , 
I 

where 

are generators of the Lorentz group, is a constant of the motion, i.e., 

[Ap, K] =O. 

The commutation relations of A, with M,,A are those of a vector; the relations 

P~L~J~ = - (g,,a-g~;tvi+.Jt 

[M~,dfd = -i(g,sMn,-g~~~~-g,~~~~g~~M~~) 
are helpful in calculating the commutator between components of A,. One finds 

[A,, ,A,1 = iM,,,- 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

We furthermore note that A,, is proportional to Mjo and x0, and therefore vanishes in the 
nonrelativistic limit. The vector A,, is therefore a proper relativistic generalization of the Lenz 
vector for the two-body Kepler problem. 

The relation ( 14), along with ( 13) and 

[M,+AA,I = -i(g,, AL-gpvAp) (15) 
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define an algebra of the associated dynamical group. Writing these relations in terms of com- 
ponents, with Li= Mjk (ijk cyclic), we have 

[A+4/] =iLk (ijk cyclic), 

[L,Lj]=iLk (ijk cyclic), 

[ LipA,] =iAk (ijk cyclic), 

tAoJAil = iMoi, 

(16) 

[ MojJo] = - iAp 

[ Moi,Moj] = - iL, (ijk cyclic). (17) 

The relations (16) and (17) define the group SO(4,l); (16) is the algebra of the SO(4) 
subgroup. In a representation of SO( 4,l) induced on its maximal compact subgroup SO( 4)) 
the spectrum of K coincides with that of the energy spectrum of the nonrelativistic Kepler 
problem.’ In such a representation, we shall require that 

ApAp=A2--A”>0 

so that the nonrelativistic limit is correct. 
Note that the Li have the same form as the nonrelativistic case, but 

Ai= -G & (MjiP ‘+P ‘Mji) +a ;+& (Moi~“+~oMoi) 
J I 

(18) 

i.e., the space part of the Lenz vector contains an additional term (which vanishes in the 
nonrelativistic limit). It is, however, an identity that 

E~,,&“M*O‘= 0, (19) 

since A,, contains x” or p” in every term (as right factors). Taking the p =0 component, it 
follows that 

A-L=0 (20) 

in the relativistic case as well. It was shown in Ref. 4 that, for the classical Kepler problem, 
there exists a frame in which the relative t is zero. The problem reduces, in this case, to the 
form of the nonrelativistic one. Equation (20) (with the A and L of that frame) is the zero 
component of a four vector, which, under Lorentz transformation takes on the form ( 19). 

There are two Casimir operators for SO (4,l) . These are obtained by appending A, anti- 
symmetrically as a row and column to Mpy and constructing the independent second order and 
fourth order invariants. They are 
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The degeneracy of the levels is the same as for the nonrelativistic problem in the SO(4) 
subgroup, but in SO( 4,1) there is additional multiplicity. The general structure of the repre- 
sentations and in geometrical meaning of the relativistic Lenz vector will be discussed in a 
succeeding publication. 

I am grateful to L. C. Biedenharn for discussions on this subject some time ago during a 
visit to Duke University, and I wish to thank L. Michel for very helpful discussions and for his 
hospitality at IHES. 
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