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A geometric view of the possible outcomes of elastic collisions of two massive bodies is developed
that integrates laboratory, center of mass, and relative body frames in a single diagram. From these
diagrams all the scattering properties of binary collisions can be obtained. The particular case of
gravitational scattering by a moving massive object corresponds to the slingshot maneuver, and its
maximum velocity is obtained. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

We show how to geometrically parametrize the elastic col-
lision between two bodies of arbitrary masses and velocities
by using diagrams in the rest-frame of one of the bodies. For
given masses and initial velocities the possible solutions in
two dimensions can be parametrized by a single angle � for
both attractive or repulsive interactions. Although an elastic
collision is a highly idealized approximation of real interac-
tions, there are many applications where this approximation
is appropriate.

The statement that two bodies collide means that for a
very short time �t in comparison to the ratio of characteristic
length scales and speeds, the forces due to gravitational,
electromagnetic, or any other interaction between the two
bodies dominate any external forces in causing the momen-
tum change �p� i of each of the bodies. This condition implies
that the impulse received from the external forces by one
body during the collision is negligible in comparison to the
impulse contribution from the interaction forces due to the
other body, which usually justifies assuming that the total
linear momentum or center of mass momentum of the two
bodies during the collision is a constant. This assumption is
an approximation because the total change of momentum of
the system is equal to the total impulse received. �The total
impulse due to internal forces must add to zero because the
forces on the two bodies must be instantaneously equal and
opposite.� This approximation becomes better as �t→0 or
the external forces become weaker relative to the internal
forces and is exact when there are no external forces, in
which case the center of mass momentum is a constant of the
motion.

When the interactions are conservative, the total mechani-
cal energy is conserved during the collision, which leads to
the assumption that the total kinetic energy is conserved im-
mediately before and after the collision, that is, when the
internal forces are �and again become� negligible in compari-
son to the external forces. This assumption is also an ap-
proximation, which becomes asymptotically exact when
there are no external forces. When the internal forces are
central, the total angular momentum is also conserved in the
collision under similar assumptions.

The usual treatment of the elastic collision of two bodies
of masses m1 and m2 with initial velocities v�0 and u�0 invokes
conservation of linear momentum and kinetic energy in a
one- or two-dimensional setting.1–5 Three-dimensional colli-
sions are seldom addressed, but see Ref. 6. The view from

the initial �rest� frame of one of the bodies is usually worked

584 Am. J. Phys. 74 �7�, July 2006 http://aapt.org/ajp
out and related to the center of mass �CM� view of the col-
lision. The latter is particularly simple because the total lin-

ear momentum P� cm is always zero in this reference frame,
which means that

v�0� = −
m2

m1
u�0� and v�1� = −

m2

m1
u�1�, �1�

where v� i�=v� i−V� cm and u� i�=u� i−V� cm. Equation �1� means that
the incoming velocities appear as collinear opposing vectors
in the CM frame and so do the outgoing velocities. Conser-
vation of kinetic energy is a scalar equation which in the CM
frame can be expressed as

�v�0�� = �v�1�� and �u�0�� = �u�1�� . �2�

The resulting velocity directions remain undefined, so ad-
ditional information is necessary to completely determine the
velocities, for example, the scattering angle with respect to a
reference direction. For a vector of given magnitude but un-
known direction the possible outcomes define the points on a
circumference centered on the origin. In the CM frame these
vectors, v�1� and u�1�, describe two circumferences whose dia-
metrically opposed points represent the possible outcomes
for the v-body and u-body velocities �see Fig. 1�. To return to
the laboratory frame it is necessary to add the constant vector

V� cm.
In the laboratory frame the following procedure can be

used to geometrically determine these outcomes. First notice
that v�1=v�0 and u�1=u�0 is also a possible solution, corre-
sponding to a missed collision. Extending v�0 and u�0 from the
origin defines points on two concentric circumferences

whose center is pointed to by extending V� cm from the origin;
these three points are in a straight line. These two circumfer-
ences define all the possible velocities in the laboratory
frame, and, once the direction of a resulting velocity is de-
termined, then so is the other by the collinearity of the three
points �two on each circumference plus the center�. The col-
lision trapezoid in velocity space referred to in many text-
books is obtained in Fig. 1 by joining all the arrowheads.

These properties of the binary elastic collision are well
known and will not be discussed further. Instead, we will
develop an alternative geometric interpretation of the conser-
vation laws and relate the laboratory view, the CM view, and
the view of the collision from the initial reference frame of
one of the bodies. This latter reference frame is more prac-
tical because it is asymptotically coincident at t→−� with

the noninertial body frame of the relative coordinates and
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velocities for which the two-body problem for central forces
is usually solved; that is, the frame in which the relative
motion of the two masses will appear as that of a single
reduced mass �=m1m2 / �m1+m2�, at the relative position of
one of the masses, moving under forces pointing to a fixed
total mass M =m1+m2 at the frame’s origin, where the other
mass is at rest; this motion can be calculated for sufficiently
well behaved forces. In particular, for a gravitational colli-
sion the result must be a hyperbola �unless the asymptotic
provisos made in the preceding paragraphs do not apply, for
example if the two bodies do not start or end sufficiently far
apart, and then elliptic and parabolic collisions should be
considered�.

II. ELASTIC COLLISION: TWO-DIMENSIONAL
CASE WITH ONE BODY AT REST

In a collision with a mass at rest at the origin, the resulting
trajectories lie on a plane in which the total angular momen-

tum L� 0 relative to the CM is orthogonal to both v�1 and u�1
�strong action-reaction law�.

In the frame where the u-body is initially at rest, the rel-
evant conservation equations for a collision with a v-body
with velocity v�0 are

m1v�0 = m1v�1 + m2u�1, �3a�

1
2m1v0

2 = 1
2m1v1

2 + 1
2m2u1

2, �3b�

which represent linear momentum conservation and kinetic
energy conservation before and after an elastic collision. An
equivalent way of writing Eq. �3� is

m1 �v�0 − v�1� = u�1, �4a�

Fig. 1. Laboratory and CM views of an elastic collision between different bo

from the same origin, V� cm and the resulting velocities u� 1 and v�1 always lie

outcomes of v�1 and u� 1 lie on circumferences centered at V� cm passing throug
represent the u- and v-scattering angles relative to the incoming velocity of
m2
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m1

m2
�v�0 − v�1� · �v�0 + v�1� = u�1 · u�1. �4b�

We use Eq. �4a� to replace m1�v�0−v�1� /m2 by u�1 on the
left-hand side of Eq. �4b�, and u�1 by m1�v�0−v�1� /m2 on the
right-hand side, and obtain

u�1 · �v�0 + v�1� = u�1 · �m1

m2
�v�0 − v�1�� . �5�

Equation �5� can be solved to express the unknown scalar
product v�1 ·u�1 in terms of v�0 ·u�1 as

v�1 · u�1 =
m1 − m2

m1 + m2
v�0 · u�1. �6�

We take the scalar product of u�1 with both sides of Eq. �4a�
and use Eq. �6� to eliminate v�1 ·u�1 and obtain

2m1

m1 + m2
v�0 · u�1 = u�1 · u�1. �7�

Equation �7� expresses the magnitude

u1 = �u�1� = �u�1 · u�1 �8�

in terms of the unknown angle � that u�1 makes with v�0. We
denote the outgoing direction of the u-body by

û� =
u�1

u1
. �9�

Then Eq. �7� is equivalent to

u1 =
2m1

m1 + m2
v�0 · û�. �10�

Apart from the unknown value of �, the resulting u-body

of different masses �m2�m1� with initial velocities u� 0 and v�0. When drawn

traight line, as also holds for V� cm and u� 0 and v�0. Furthermore, the possible

and u� 0. The angle �� is the scattering angle in the CM frame and � and �
M, viewed in the rest frame of the u-body.
dies

on a s

h v�0

the C
velocity must be
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ctivel
u�1 =
2m1

m1 + m2
v0 cos ���û�. �11�

Equation �4a� can now be used to deduce an expression
for v�1:

v�1 = v�0 −
m2

m1
u�1 �12�

or, in terms of �,

v�1 = v�0 −
2m2

m1 + m2
v0 cos ���û�. �13�

Equation �13� is not particularly illuminating with regard to
its geometrical relation to u�1, so a more geometrical ap-
proach will be adopted in Sec. II A for the determination of
v�1.

A. Geometrical view

Equation �7� can be expressed in terms of the known vec-

tor V� cm. We set

d� =
2m1

m1 + m2
v�0 = 2V� cm, �14�

and collect terms on the left-hand side using the fact that

d� ·u�1=u�1 ·u�1, or

�d� − u�1� · u�1 = 0, �15�

that is, d� −u�1 is always orthogonal to u�1. Equation �15�
shows that any admissible solution u�1 will define a chord
from the origin to a point on the circumference with fixed

�

Fig. 2. Collision diagram for different masses m1�m2, with the u-body �ma

all possible outcomes u� 1. As chords of this circumference, u� 1 and d� −u� 1 alw

orthogonal to u� 1 and is restricted to a circumference of diameter D� =2v�0. T

circumference centered on V� cm with radius �v�0−V� cm�. In this diagram u� 1� and

frame, in which the incoming velocities would be −V� cm and v�0−V� cm, respe
diameter defined by d �see Fig. 2�.
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The angle �� �−� /2 ,� /2� formed by u�1 and v�0 is the

same as the angle between u�1 and d� . Thus, û� is the unit
vector in the direction determined by � and, for a given
choice of �,

u�1 = d cos ���û�. �16�

Given the geometric constraints on u�1, we can determine v�1
by substituting m1�v�0−v�1� /m2 for u�1 on the left-hand side of
Eq. �4b�. After rearranging terms we obtain

u�1 · �v�0 + v�1 − u�1� = 0. �17�

Equation �17� means that the vector n� , given by

n� = v�0 + v�1 − u�1, �18�

is always orthogonal to u�1,

u�1 · n� = 0. �19�

We will show now that, just like u�1, the vector n� is
uniquely determined as soon as � is given. The expression
for v�1 will then also be determined from Eq. �18� as

v�1 = u�1 − v�0 + n� . �20�

We use the orthogonality condition expressed by Eq. �19�
to cancel the right-hand side in the scalar product of Eq. �4a�
with n� , and replace Eq. �20� on its left-hand side to find
�m1 /m2�n� · �v�0−v�1�=0 or

n� · �2v�0 − n� � = 0. �21�

That is, n� and D� −n� �where D� =2v�0� are always orthogonal.
Similar to Eq. �15�, Eq. �21� means that n� defines a chord
from the origin to a point on the circumference with a fixed

diameter defined by D� . Because n� is orthogonal to u�1, this

2� at rest �u� 0=0�. The circumference with diameter d� =2V� cm is the locus of

subtend an angle � /2. A choice of � determines u� 1 and n� , which is always

utcome velocity v�1 is geometrically determined by n� +u� 1−v�0 and lies on a

present the outcome velocities for the u- and v-bodies as seen from the CM

y.
ss m

ays

he o

v�1 re
condition defines a unique chord that makes the angle 	
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= �� /2�−� with v�0. Its direction defines the unit vector ŵ�,
orthogonal to û�, and therefore

n� = 2v0 cos ��

2
− ��ŵ� = 2v0 sin ���ŵ�. �22�

We use Eqs. �22� and �11� for u�1 and decompose v�0 into

v�0 = v0�cos ���û� + sin ���ŵ�� , �23�

so that Eq. �20� becomes

v�1 = v0	m1 − m2

m1 + m2
cos ���û� + sin ���ŵ�
 . �24�

The possible outcomes of v�1 also have a geometrical locus
defined by a circumference centered at

V� cm =
1

2
d� =

m1

m1 + m2
v�0 �25�

away from the origin, with radius

rv = �v�0 − V� cm� =
m2

m1 + m2
v0. �26�

This radius is to be expected because v�1=v�0, u�1=0 is one
possible result for the collision, meaning that the closest ap-
proach of the two bodies was too far compared to the range
of the interaction forces. Confirmation that in general the
possible v�1 define such a circumference results from verify-
ing the orthogonality condition for two particular chords,

�v�1 − v�0� · �v�1 − v�0 + 2�v�0 − V� cm�� = 0, �27�

which holds when Eqs. �25�, �20�, and �4a� are used, together

with the identities u�1 ·d� =u�1 ·u�1 and u�1 ·n� =0:

�v�1 − v�0� · �u�1 −
2m1v�0

m1 + m2
+ n�� = −

m2

m1
u�1 · �u�1 − d� + n� �

Fig. 3. Collision diagram for equal masses m1=m2, with the u-body �mass
v�1 � �n� �u� 1, that is �+�=� /2.
= 0. �28�
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B. Scattering angles in the u-body and center of mass
frames

The scattering angles for the collision can now be deduced
from the parameters m1, m2, and �. Relative to the invariant

direction V� cm of the CM, the scattering angle for u�1 is evi-
dently � itself. As for the scattering angle � between v�1 and

V� cm � �v�0, it can be calculated from Eqs. �23� and �24�:

cos ��� =
v�1 · v�0

v1v0
=

1 − �2m2/�m1 + m2�� cos2 ���
�1 − �4m1m2/�m1 + m2�2� cos2 ���

.

�29�

The total scattering angle between u�1 and v�1 is �+�.
If m1=m2, the identity �29� reduces to cos ���=sin ���,

which means that �=	= �� /2�−� and

u�1 · v�1 = u1v1 cos �� + �� = 0. �30�

Thus, if m1=m2, the resulting velocities u�1 and v�1 are or-
thogonal and are both chords of the circumference with di-

ameter d� =v�0 �see Fig. 3�. This orthogonality is geometrically
visible from Eq. �6�, which in this equal-mass case reduces
to v�1 ·u�1=0, indicating that the solutions to the collision must
remain orthogonal.

Note that if the angle � is specified instead of the angle �,
the determination of u�1 is geometrically unique when m1

m2, but there is an ambiguity when m1�m2 because there
are two different magnitudes for v�1 with the same �, hence
two different angles �. Direct inversion of Eq. �29� yields

cos2 ��� =
1

2
	1 +

m1

m2
sin2 ��� ± cos ����1 −

m1
2

m2
2 sin2 ���
 .

�31�

If m1
m2, the solution with the − sign is the correct one.
This solution can be argued by looking at the limiting case of
a missed collision ��=0� with the m2 body at rest. In such a
case � is ill-defined �because the m2 velocity remains zero�,

t rest �u� 0=0�. The u� 1 and v�1 circumferences now coincide, and necessarily
m2� a
but we can see that in neighboring collision cases, the limit
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of � as �→ ±0 is ±� /2, not zero �see Fig. 4�. Actually �
=0 for a head-on collision, and, because m1
m2, the out-
come for v�1 corresponds to a back-scattering with �=�.

If m1�m2, real solutions exist only for �� �−�L ,�L� �in-
dicating that there is no back-scattering in these cases�,
where

�L = ± arcsin �m2

m1
� . �32�

The two solutions �±��� obtained in Eq. �31� now apply.
Geometrically this result could be obtained by referring to
Fig. 2 and noting that the limiting values v�1L

,�L for v�1 and �

are obtained when v�1 is tangent to its locus circumference,

that is, perpendicular to v�1�=v�1−V� cm. Because v�1L
·v�1L

� =0,

v�1L
· V� cm = �v�1L

�2. �33�

Because �v�1L
�2=Vcm

2 −rv
2 = �m1−m2� / �m1+m2�v0

2, we have
cos ��L�=�1− �m2 /m1�2, or

sin ��L� = ±
m2

m1
. �34�

The scattering angle � for the v-body can also be related
to the scattering angle �� as seen from the CM frame. We use

v�1=v�1�+V� cm together with Eqs. �25� and �26� and obtain

tan ��� =
v1� sin ����

Vcm + v1� cos ����
=

m2 sin ����
m1 + m2 cos ����

. �35�

For equal masses

tan ��� = tan ���

2
� . �36�

Likewise, the scattering angle � for the u-body can also be
related to ��. If we use the fact that u1�=Vcm and u�1=u�1�

�

Fig. 4. Collision diagram for different masses m1
m2, with the u-body �ma
so backscattering occurs when �� � �� /2.
+Vcm, we find
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tan ��� =
u1� sin ����

Vcm − u1� cos ����
=

sin ����
1 − cos����

, �37�

which simplifies to

tan ��� = cot ���

2
� , �38�

which is independent of the mass ratio.

III. ELASTIC COLLISION: GENERAL
TWO-DIMENSIONAL CASE

If both bodies are initially moving when viewed from a
laboratory frame, the same analysis can be carried out �see
Fig. 5�. All that is necessary is to switch temporarily to an
equivalent inertial frame Su0

moving with the initial u-body
velocity u�0. In this frame the situation is exactly as before,
that is, an elastic collision with a body initially at rest. The
same equations and conclusions are valid except that every-

where we need to let v� i→v� i−u�0, u� i→u� i−u�0, and V� cm

→V� cm−u�0.
In this case the conservation equations are

m1v�0 + m2u�0 = m1v�1 + m2u�1; �39a�

1
2m1v0

2 + 1
2m2u0

2 = 1
2m1v1

2 + 1
2m2u1

2, �39b�

which can be rewritten as

m1

m2
�v�0 − v�1� = u�1 − u�0; �40a�

m1

m2
�v�0 − v�1� · �v�0 + v�1� = �u�1 − u�0� · �u�1 + u�0� . �40b�

Manipulation of Eq. �40� in a manner similar to Sec. II will
generate the equivalent relations in this new frame Su0

. Equa-

� at rest �u� 0=0�. The v�1 circumference is greater than the u� 1 circumference
ss m2
tion �7� now becomes
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�u�1 − u�0�2 =
2m1

m1 + m2
�v�0 − u�0� · �u�1 − u�0� . �41�

We set as before

d� = 2�V� cm − u�0� =
2m1

m1 + m2
�v�0 − u�0� , �42�

û� =
1

�u�1 − u�0�
�u�1 − u�0� , �43�

where û� is the direction of u�1−u�0 and � is the angle be-
tween v�0−u�0 and u�1−u�0. Then

�u�1 − u�0� = d� · û� =
2m1

m1 + m2
�v�0 − u�0� cos ��� . �44�

Note that Eq. �41� is equivalent to

�u�1 − u�0� · �u�1 − u�0� = d� · �u�1 − u�0� , �45�

which means that

�u�1 − u�0� · �u�1 − u�0 − d� � = 0. �46�

As with Eq. �15�, Eq. �46� states that u�1−u�0 always defines a

chord from the origin to a circumference of diameter d� . The
final expression for u�1 is thus

u�1 = u�0 +
2m1

m1 + m2
�v�0 − u�0� cos ���û�. �47�

The equivalent of the n� vector in Eq. �18� is

n� = �v�0 − u�0� + v�1 − u�1, �48�

and its orthogonality to u�1−u�0 remains

�u�1 − u�0� · n� = 0. �49�

Therefore Eq. �21� becomes

n� · �2�v�0 − u�0� − n� � = 0, �50�

and n� also defines a chord from the origin to a circumference
� � � �

Fig. 5. Collision diagram for arbitrary masses m1
m2 with initial velocities
obtain the final velocities u� 1, v�1. The relation of this diagram to that repres
of diameter D=2�v0−u0�. Thus, geometrically, once u1 is
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defined then, so is n� and Eq. �48� yields the final expression
for v�1 as

v�1 = n� + u�1 − �v�0 − u�0� . �51�

In this general case the only invariant direction in the col-
lision is that of the center of mass. It is left as an exercise for
the reader to derive a relation between �, �, and �� in the
u-body and CM frames and the scattering deviations from
the center of mass direction of the resulting u�1 ,v�1 velocities
in the lab frame.

IV. CONCLUSION

We have shown how the relative velocities in a binary
elastic collision obey simple geometric relations even for
arbitrary masses and initial velocities. As can be seen from
Fig. 5, the possible final velocities u�1 and v�1 for given initial
conditions lie on two concentric circumferences centered at a

point in velocity space defined by V� cm. The points defined by

u�1, v�1, and V� cm from the origin always define a straight line.
These circumferences have radii

ru = �u�1 − V� cm� =
m1

m1 + m2
�v�0 − u�0� , �52a�

rv = �v�1 − V� cm� =
m2

m1 + m2
�v�0 − u�0� , �52b�

where v�1−u�1 was replaced by v�0−u�0 because, from Eq. �51�
and the orthogonality condition �50� �see Fig. 1�,

�v�1 − u�1�2 = n� · �n� − 2�v�0 − u�0�� + �v�0 − u�0�2 = �v�0 − u�0�2.

�53�

The maximum radius for either of these circumferences is
ri= �v�0−u�0�, which occurs when the respective i-body mass is
much smaller than the other, in which case the latter circum-
ference will have a vanishing diameter, meaning that the ve-
locity of the massive body is similar to that of the center of

mass itself. If, for instance, m1�m2, then V� cm�v�0�v�1. In

0 viewed in the laboratory frame. The u-body rest frame diagram is used to
in Fig. 1 is also shown.
v�0, u�
ented
the limit m2 /m1→0, rv→0 and
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ru =
m1

m1 + m2
�v�0 − u�0� → �v�0 − u�0� . �54�

All the scattering properties for binary collisions can be
obtained from collision diagrams such as those in Figs. 2–5.
In particular, the conditions for v-body back-scattering or the
existence of a maximum scattering angle depends only on
the condition rv�ru. An interesting exercise would be to
derive the angular � range for which an increase in outgoing
velocity is obtained for a binary elastic collision with m1

m2, u�0=0.

One of us has written a Java application that renders these
collision diagrams interactively.7 The program uses a Live
Java library developed by Martin Kraus.8 Simulations reveal
scattering situations that are not intuitively obvious but can
be understood when the full two-body motion is explored. In
particular, by changing the asymptotic angle � and mass ratio
m2 /m1, we can obtain the optimum incident condition for a
gravity-assisted fly-by �or gravitational slingshot�.9 It is then
apparent that the maximum velocity attainable by the smaller
mass, m1
m2, in a collision is

v1,max = Vcm +
m2

m1 + m2
�v�0 − u�0� �55�

which occurs when both masses exit in the same direction as

that of V� cm. As a consequence of Eq. �55�, when the massive
body is initially at rest �or when the collision is viewed from

its rest frame�, the maximum velocity attained is v1,max=v0.
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In future work we will show that these collision diagrams
are useful for calculating the eccentricities and focal dis-
tances for open Keplerian orbits for gravitational scattering
or repulsive Coulomb scattering. An explanation of the sling-
shot maneuver and gravity-assisted planetary fly-by can be
easily obtained. In this way the orbits can be viewed in the
laboratory frame and a study can be made of the optimal
incidence angle for a planetary fly-by that delivers the maxi-
mum velocity boost in a chosen direction.
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