The quantum relativistic two-body bound state. I. The spectrum
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In the framework of a manifestly covariant quantum theory on space-time, it is shown that the
ground state mass of a relativistic two-body system with O(3,1) symmetric potential is lower
when represented by a wave function with support in an O(2,1) invariant subspace of the
spacelike region. The wave functions for the relativistic bound states are obtained explicitly.
Coulomb type binding, the harmonic oscillator, and the relativistic square well are treated as
examples. The mass spectrum is determined by a differential equation in the invariant spacelike
interval p, which can be put into correspondence with the radial part of a nonrelativistic
Schrodinger equation with potential of the same form, where 7 is replaced by p. In the case that
the binding is small compared to the particle masses, the mass spectrum (bounded below) is
well-approximated by the results of the nonrelativistic theory. The eigenfunctions transform
under the full Lorentz group as elements of an induced representation with O(2,1) little group.

This representation is studied in a succeeding paper.

I. INTRODUCTION

In nonrelativistic quantum mechanics, the use of Schro-
dinger’s time-independent equation with central potentials
for the study of bound states has been very successful in the
description of atomic spectra and in the construction of wave
functions as a basis for perturbation theory for the treatment
of non-spherically symmetric interactions and radiation. A
corresponding relativistic theory, with O(3,1) symmetric
direct action potentials, could be expected to offer analogous
applications, with the advantage of maintaining covariance,
essential for consistency in the determination of mass spec-
tra and for its application to radiation theory.' Such a theory
should include the nonrelativistic results when the binding is
small compared to the particle masses, and provide bounds
for the applicability of the nonrelativistic theory.

In this paper, we shall study the bound state problem in
the framework of a manifestly covariant quantum theory*”
that treats events (the occurrence of physical phenomena
locally at space-time points), rather than particles (the oc-
currence of physical phenomena with functional depen-
dence along world lines), as the fundamental physical enti-
ties.*

The construction of a manifestly covariant mechanics,
both classical and quantum, of the type that we shall use, was
carried out by Stueckelberg in 1941, for the case of a single
particle in an external field. He considered the phenomena of
pair annihilation and creation as a manifestation of the de-
velopment, in each case, of a single world line that curves in
such a way that in one half-space of time the line passes
twice, and in the other, not at all. To describe such a curve,
parametrization by the variable ¢ is ineffective, since the tra-
jectory is not single valued. He therefore introduced a para-
metric description, with parameter 7 along the world line.
Hence one branch of the curve is generated by motion in the
positive sense of ¢ as a function of increasing 7, and the other
branch by motion in the negative sense of z. The second
branch is identified with the antiparticle, a rule that also
emerged in Feynman’s quantum electrodynamics.’
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The motion, in space-time, of the point generating the
world line, which we shall call an event (and has properties
of space-time position and energy momentum), is governed
in the classical case by the Hamilton equations in space-time

dx' 0K dp'_ _ 3K )

dr  dp, dr ax, '
where x" = (t,x), p'=(E;p) [we take c¢=1 and
g, = (— 1,1,1,1)] and the evolution generator K is a func-

tion of the canonical variables x,,,p, . For the special case of
free motion,

K()ZPIIP;I/ZM: (1.2)

where M is an intrinsic parameter assigned to the generic
event, and hence

d H I
@' _p (1.3)
dr M
It then follows that
@ _» (1.4)
dt E
consistent with standard relativistic kinematics. We note,
however, that the mass squared m* = — p*p,, is a dynamical

variable since p and E are considered to be kinematically
independent, and therefore it is not taken to be equal to a
given constant. The set of values taken by m” in a particular
dynamical context is determined by initial conditions and
the dynamical equations.

In the quantum theory, x,¢ (and p,E) denote operators
satisfying the commutation relations (we take i= 1)

[x.p*] = ig". (1.5)
The state of a one-event system is described by a wave func-
tion ¥ (x)eL *(R *), a complex Hilbert space with measure
d*x = d *x dt satisfying the equation’
; 9y, (x)
ar

This equation, designed to provide a-manifestly covariant

=K (x). (1.6)
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description of relativistic phenomena, is similar in form to
the nonrelativistic Schrédinger equation. Although free mo-
tion is determined by the operator form of K, of Eq. (1.2),
i, the d’Alembertian, which is hyperbolic (p,p*
= — d, 3 instead of the elliptic operator p’= — V ?), the
same methods may be used for studying Eq. (1.6) as for the
nonrelativistic Schrodinger equation.

The unperturbed evolution of a free event is described
by a wave packet of the form

2
¥.(x) = f d“pf(p)eXp[ —i ({-’A—{) 7'] er=,

where p*> = p*p,,, p'x = p“x,,. The stationary phase contri-
bution to ¢, (x) (Ehrenfest motion) is at the point

X, = (p . /M)T, (1.8)
where p*_ is the peak value in the distribution f(p). In the
case where p°, = E, <0, we see, as in Stueckelberg’s classi-
cal example, that

dt. E

~— <0 1.9
dr M< (1.9)

It has been shown* in the analysis of an evolution operator
with minimal electromagnetic interaction, of the form

(1.7)

K= (p—ed(x))/2M, (1.10)
that the CPT conjugate wave function is given by
l//CPTr(x,z):Ipr(-xy_t)) (111)

with e~ — e. For the free wave packet, one has

P () = Jd4pf(P)exp[ —1 (;};{) T} e
(1.12)

The Ehrenfest motion in this case is
Xt = — (p*./M)T; (1.13)

if E. <0, we see that the motion of the event in the CPT
conjugate state is in the positive direction of time, i.e.,

dt, E, |E, |
=4+ —

dr~ M M
and one obtains the representation of a positive energy gen-
eric event with the opposite sign of charge, i.e., the antiparti-

cle.?

, (1.14)

Equation (1.6), with K of the form (1.10), leads to the
conservation law

-g—’;= ~a,j"(x), (1.15)
where

p(x) = 9. (0)|? (1.16)
and

Jh(x) = — (ie/2M){¢* (x)(3" — ieA" (X)W, (x)
— (3" + feAd " (xX))* (x)) Y, (x)}. (1.17)

It is clear from (1.15) that j*(x) cannot be the source of a
Maxwell field since

9, F"(x) =J"(x)

tmplies that

(1.18)
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a,J"(x) =0. (1.19)

As observed by Stueckelberg, who gave a geometrical
argument in his 1942 paper’ (or by application of the Rie-
mann-Lebesgue lemma®) p, (x) -0as 7— + oo, and hence,
for asymptotically free motion,*®

JH(x) =f drj" . (x). (1.20)

Since particles are observed in the laboratory, directly
or indirectly, by means of electromagnetic interaction, we
see that the notion of a particle is associated with the entire
world line, i.e., the set of events generated by the motion over
all 7. We have called this construction, of an object that has
the properties of a particle, from a set of events constituting
the world line, “concatenation.” *

For the treatment of systems of more than one event
(generating world lines of more than one particle), one as-
sumes the unperturbed evolution generator to be of the
form?

N 2
k=3 2 (121)

M,
In the presence of electromagnetic interaction (for spinless
particles) one uses the minimal coupling form, which is a
generalization of (1.10),
No(p—eA(x))

K=
,'Z) 2M

i

(1.22)

As pointed out above, there is a class of model systems,
for which solutions can be achieved using straightforward
methods, which involve only effective action-at-a-distance
(direct action) potentials, where the evolution generator is
of the form

2

N
Di
K= + V{x(, X550 Xy ).
,.; oM, PRz Xiy)

(1.23)

Note that in this case the potential function enters into the
dynamical evolution equation as a term added to the gener-
ator of the free motion, and therefore corresponds to a space-
time coordinate-dependent interaction mass.

Equations (1.1) become

I “
dx, _ JdK , dp; - dK - (1.24)
dr  dp, dr Ix

The program is to solve the dynamical equation (1.6)
with the dynamical evolution operator (1.22) or (1.23) [or
Egs. (1.24) for the classical case] governing the motion of
events in interaction with each other and with external
fields; predictions of observable phenomena are then ob-
tained a posteriori by concatenation of the historical se-
quence of events. We shall concentrate on the direct action
form (1.23) in this paper in our treatment of two-body
bound states. As we shall see, the relative motion of bound
states is represented by r-independent wave functions (up to
a phase). The center of mass (since the evolution generator
is quadratic in energy momentum, one may always carry out
a separation of varnables for the center of mass motion)
evolves as a free event, however, and concatenation then pro-
vides a world history of the two-body bound state that con-

i
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sists of a straight world line for the (Ehrenfest motion of)
the center of mass associated with a stationary distribution
for the relative motion.

Nonrelativistic Schrodinger potential theory implicitly
synchronizes points on the particle trajectories by assuming
that interaction occurs between them at equal times, i.e., in
the potential ¥(|r, — r,|?), where r,, the position of the first
particle, and r,, of the second, are to be taken as positions on
the trajectories at the same time 7. This synchronization can-
not be maintained in a relativistic framework. The synchro-
nization of space-time events, corresponding to points along
the particle world lines, can, nevertheless, be consistently
and covariantly maintained by means of the universal evolu-
tion parameter 7. The two-body potential function, which
we choose for Poincaré invariance to be of the form V(pz),
where

p = \/(let - xZ'“) (xl,u - x2,u ) E\/(xl - xz)zy

carries the implication that the events x,* and x," interact at
equal 7, and hence implies the existence of a synchronization
of events.’

There have been many attempts to deal with the relativ-
istic bound state problem. The Bethe-Salpeter method® and
related techniques,” based on structures provided by quan-
tum field theory, have been successful in describing spectra
to high precision.'” The quantum mechanical interpretation
of the wave function in these approaches is, however, not
completely clear.

Constraint Hamiltonian dynamics, introduced by
Dirac,'' for dealing with singular Lagrangians of the type
arising in gauge theories, has been developed for relativistic
mechanics in both the classical and quantum cases.'? The
form of the interaction potentials, however, which must be
used in this approach, is highly restricted by the integrability
conditions; possible forms for more than two particles are
difficult to construct, and are not known in general.'?

One of the advantages of the constraint formalism is
that, in scattering processes, the asymptotic expectation val-
ue of p,” for each of the particles is ensured to be the correct
“on shell” value.'? In the unconstrained form of mechanics
that we shall use, there is no restriction on the structure of
the potential function (other than the requirement that the
resulting differential equations are mathematically well-de-
fined) for any number of particles. The asymptotic behavior
of the expectation value of p,” for each particle in a scattering
process (or inionization from a bound state) is related to the
asymptotic synchronization of events in the universal histor-
ical time 7.'* Transitions, such as between 1 and e masses,
are admitted in this framework.

Some authors have discussed the relativistic two-body
bound state in a framework similar to the one we use here.'*
In these works, it was assumed that the relative motion is
free to penetrate the entire spacelike region. We shall show
that, for the O(3,1) symmetric Coulomb-type potential, the
ground state wave function with supportinan O(2,1) invar-
iant subregion of the full spacelike region has a lower mass
eigenvalue than the ground state wave function with support
in the full spacelike region. This phenomenon corresponds
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to a spontaneous breakdown of the O(3,1) symmetry of the
differential equations.

The support of the wave function determines the range
of synchronization of the two-event system, and our compu-
tation of excited states assumes that this synchronization is
characteristic of the bound states and persists, i.e., their sup-
port also lies in the O(2,1) invariant subregion. The result-
ing mass spectrum, for the case in which the binding is small
compared to the mass of the particles (as, for example, in
atomic physics), essentially coincides with the nonrelativis-
tic Schrodinger energy spectrum for the corresponding
V(r*), for arbitrary F(p?). The method used here is applica-
ble as well to the problem of the strong binding of light parti-
cles, such as light quarks in a hadron. If, however, the bind-
ing exceeds a critical strength (in case there is an ionization
point), we find that the simple notion of a bound state as a
composite of two systems with intrinsic properties deter-
mined asymptotically above the ionization point is unten-
able. Techniques will be presented elsewhere to take into
account the effects of spin.'®

Since the support of the bound state wave functions lies
in a restricted O(2,1) invariant sector of the full spacelike
region, the representations they provide for the full O(3,1)
space-time symmetry must be of induced type [it is shown in
the Appendix that an O(2,1) ladder cannot be constructed
in the Hilbert space]. Under Lorentz transformations, the
(unit) spacelike vector n » for which O(2,1) is the stabilizer
subgroup transforms through all spacelike directions and
covers the complete single sheeted unit hyperboloid. Under
such transformations, the wave functions undergo an action
of the O(2,1) little group, and are modified along orbits par-
ametrized by this unit vector.

The induced representation is constructed as a family of
Hilbert spaces with measure spaces restricted to a family of
O(2,1) invariant sectors. The parameter n, appears, in this
respect, to play the role of a continuous superselection rule. "’
In a sequel to this paper, ' to be called 11, the representations
of O(3,1) obtained in this way are studied by classifying
states according to the eigenvalues of the operators generat-
ing an O(3) subgroup of O(3,1). It is shown there that these
constitute the canonical representations of Gel’fand of the
principal series; they are unitary in the larger Hilbert space
in which all of the Hilbert spaces labeled by n,, are embedded
with measure d *n 8(n> — 1).

In Sec. I, we formulate the problem of reduced motion
inan O(3,1) symmetric potential, and obtain the eigenvalue
equation for the relative mass spectrum as a radial equation
of Schrodinger type, with invariant p as the “radial” coordi-
nate, and the O(3,1) Casimir operator 1M, M*" as the coef-
ficient of the “centrifugal” term. In Sec. 111, the differential
equations after separation of variables are obtained for a par-
ametrization in terms of two angles 8, ¢, and a hyperbolic
angle B which, along with p, cover what we shall call the
[O(2,1) invariant] restricted Minkowski space (RMS), a
region obtained as the exterior of two hyperplanes tangent to
the light cone and oriented along the z axis. This region may
be visualized by folding the x, y coordinates together; in the
resulting three-dimensional space, these hyperplanes be-
come planes and intersect along the z axis (Fig. 1). Alterna-
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FIG. 1. The restricted Minkowski space (RMS) taken for the support of
solutions of the eigenvalue equation in relative variables is designated as I,
the region exterior to the two planes tangent to the light cone and intersect-
ing along the x, axis (6 = 0,7). The spatial coordinates x, and x. are folded
into a single axis in this figure (x, ); in 3 + 1 dimensions the RMS is con-
nected (but not simply connected, as seen from Fig. 2).

tively, we display this region in a projective space (Fig. 2)."”
The order of separation is first in ¢, the azimuthal angle
around the z axis, then in the O(2,1) boost parameter 8 to
obtain the eigenvalue for the O(2,1) Casimir operator (the
bound state levels are degenerate with respect to this quan-
tum number). The separation equation for the remaining
angle 6 corresponds to the eigenvalue equation of the O(3,1)
Casimir operator. The solutions and normalization condi-
tions for these eigenvalue equations are given in Sec. IV. The
separated equations for both & and £ variables have solu-
tions that are associated Legendre functions, with *“magnetic
quantum number” determined by the O(2,1) Casimir. The
separation function of # has order determined by the O(3,1)
Casimir. A geometrical interpretation is given in this section
relating these quantum numbers to the usual nonrelativistic
magnetic and orbital quantum numbers. In the nonrelativis-
tic limit, these functions survive intact to play the usual role
of the Legendre functions in the description of the nonrela-
tivistic bound states.

In Sec. V the radial equation and invariant relative mass
spectrum is discussed, and, in Sec. VI, we treat the examples
of an O(3,1) invariant Coulomb-type potential (which re-
duces to the ordinary Coulomb potential in the nonrelativis-
tic limit), the relativistic oscillator (where we find that no
subsidiary conditions are required), and an O(3,1) invar-
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FIG. 2. The RMS in the projective space R = r/¢; the unit sphere corre-
sponds to the light cone. Each point corresponds to a line in Minkowski
space. The point at « along the Z axis is the zaxis, and the pointat R = Qs
the ¢ axis. The RMS is outside the cylinder X > + Y = 1, i.e, x> + y'»1".
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iant version of a square well. The lowest-order relativistic
corrections to the corresponding nonrelativistic results are
given in case the binding is small compared to the particle
masses. For very large binding, exceeding a critical strength,
we show that the simple idea of a bound state as a composite
of two systems with intrinsic properties determined asymp-
totically above the ionization point (in case, as in the first
and third examples, there is an ionization point) becomes
untenable.

1. 0(3,1) SYMMETRIC EQUATION OF MOTION AND THE
EIGENVALUE EQUATION FOR REDUCED MOTION

We shall study in this section the evolution equation,®

i—q—\llr(x,,xz) =K V¥ _(x,,x5), (2.1)
or
where (Pi2 =Pi“Pi,l =—-d" ai/l )s
K=p2/2M, + p.2/2M, + V, (2.2)
and W_eL*(R").

We shall take the direct action potential V' to have the
0(3,1) symmetric form

V="V, (2.3)
where
pr=(x; —x,)7 = (x; — x2)"(x, — X5),,. (2.4)

We now separate the center of mass motion by defining
the relative and center of mass variables with the natural
choice®

7 H
Pl=pr+pt, Xt= MIE :Ajzzxz , (2.5)
1 2
o #
| 2

where m = M\M,/ (M, + M,) and M =M, + M,. Equa-
tion (2.1) can be represented as a direct integral over Hilbert
spaces L 2(R *), with measure d “x, labeled by values of the
absolutely conserved P*. One obtains the family of equa-
tions

2

P20 =T K| 0.
In this way, we have separated out the center of mass mo-
tion. The operator K has, in general, continuous spectrum,
but on the Hilbert spaces that are elements of the direct sum,
i.e., for each value P '*, K, may have discrete or continuous
spectrum. This spectrum corresponds to the contribution of
the relative motion to the mass spectrum; we shall call it the
“mass spectrum of the relative motion.” We shall study the
discrete spectrum of this operator, and the corresponding
eigenstates.

For the discrete spectrum, we write

W, (x) =exp(— i(P">2M)7)e ™ *Tip,. @ (x);  (2.8)

Eq. (2.7) then becomes (we suppress reference to P’ in the
following)

K49 (x) =(— (1/2m)3,3* + V(p" ) W'’ (x).  (2.9)

The (invariant) relative radial coordinate can be separated
from the angular and hyperbolic angular variables in the

(2.7)
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d’Alembertian with the help of the O(3,1) Casimir operator,

A=IM M, (2.10)
where
M = xtp*" — x*p". (2.11)

With the help of the commutation relations (1.5) [valid
also for the relative coordinates defined by (2.5)], one ob-
tains

A = x*p* + 2ixp — (x'p)?, (2.12)
where
. . d
X p=ExX'p, = —ip—, (2.13)

dp
valid for spacelike or timelike values of x*. We therefore see
that (O= — 3" d,,p’ = x"x,)

7

A=pO+3p-2 29" (2.14)
dp dp”
or
o=_9L _ 39 A (2.15)
d° p dp p

Note that p*>0 in the spacelike region [in the timelike re-
gion, p should be replaced by ip, where p'> = — x*x,; in
terms of the new variable p', it appears that the expression
for Oin (2.15) has changed sign].
It then follows that Eq. (2.9) can be written as
1 az 3 4

Ka (a) ={__ e —— —
v 2m dp*

+,%] +Vn | o . (2.16)

lll. SEPARATION OF VARIABLES

Further separation of variables depends on the choice of
the sector of Minkowski space in which one studies the dif-
ferential equation (2.9) and the corresponding parametriza-
tion of these sectors by hyperbolic angular (which we shall
call hyperangular) and angular variables.>' Each sector is
associated with a spectrum determined by its structure and
the boundary conditions applied to the solutions in that sec-
tor.

In addition to the more widely used decomposition of
Minkowski space into the timelike and full spacelike regions,
we shall use a further decomposition of the spacelike region
into two subregions [invariant under an O(2,1) subgroup of
0(3,1)]. One of these sectors (1) consists of the space-time
points external (in spacelike directions) to two hyperplanes
tangent to the light cone that are oriented along the z axis
(the direction must be chosen to define this space). The sec-
ond (II) consists of the space-time points in the sector interi-
or (timelike direction) to these hyperplanes, but excluding
the light cone. In Fig. 1 this decomposition is shown schema-
tically by folding the two space axes x, y together (defining
the coordinate x| ); in the resulting three-dimensional space,
the two hyperplanes become planes and intersect along the z
axis.

Alternatively, one may represent the light cone in a pro-
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jective three-dimensional space'® by dividing the equation
|r|> — £? =0 by £ to obtain |R|> = 1 (R =r/¢), the equa-
tion for the unit sphere. The region I is characterized by x*
+ y* — t2>0, translationally invariant in z. In the projective
space, this region is mapped to X > + Y %> 1, the space exteri-
or to the cylinder, parallel to the Z axis, which circumscribes
the unit sphere. The space interior to the cylinder, excluding
the unit sphere, corresponds to region I1. We remark that the
point at infinity on the Z axis (z/t = « ) corresponds to the z
axis, and the point at the center of the unit sphere

(Vx? + y> + 22/t = 0) corresponds to the ¢ axis. This repre-
sentation is shown in Fig. 2.

The subgroup O(2,1) of O(3,1) leaving sectors I and 1T
invariant has been used by Bargmann?” as a little group for
the construction of an induced representation of the Poin-
caré group with the direction of the z axis (momentum)
providing the parameter along the orbit. In this construc-
tion, he used functions with support in the interior sector II.
Zmuidzinas,”” in his study of the unitary representations of
the Lorentz group using differential equations, studied both
the interior sector II and the exterior sector I. We shall see
that solutions of Eq. (2.16) with support in the exterior sec-
tor I are associated with the physical bound states of the two-
body problem with O(3,1) symmetric potential. We shall
call this sector the restricted Minkowski space (RMS) ori-
ented, as we have described it here, along the z axis.

The parametrization

x"=psin @sinh B, x'=psin & cos ¢ cosh 3, 3.1
x*=psinfsindcoshB, x*=pcosd '

covers the RMS for 0<0< 7, 0<¢ <27, — o0 <ff< o0, and

0<p =v|r|° — ¢~ < oo (we shall use x and r interchange-
ably). We record, for comparison, the parametrization

x"=psinhB, x'=pcoshpBcos¢sin b, 39

x*=pcosh Bsingsin 6, x*=pcoshfcos 6, (-2)
for the full spacelike region.

The properties of the wave functions and the spectrum
of K., obtained in the full spacelike region'® have important
differences from those expected of physical bound states for
spinless particles. In particular, separation of variables in the
full spacelike region parametrized by (3.2) leads to degener-
acy in L.” for every O(3,1) symmetric potential and the non-
relativistic limit of the spectrum obtained does not coincide
with the nonrelativistic hydrogen spectrum in the case
Vl/p.

We therefore proceed to study Eq. (2.16) in the case
that the wave functions have support in sector I, the RMS.
Introducing the usual three-vector notation

(3.3)
(3.4)

for i, j,k running from 1 to 3, and €, the totally antisymme-
tric (unit) tensor in three dimensions, the nonvanishing
0(3,1) Casimir operator (the second Casimir operator

L, = le; (x’p* — x*'p’),

Ai= x()pi _ xip()’

1¢*°M, M,, = A-L is identically zero for the spinless
case) is

A=17— A% (3.5)
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In terms of the parameters of the RMS, the differential
operators d /dx* are

-5‘3— —mn@smhﬂ%
1 coshf3 &
——cos fsinh f — + —L —,
P Bae psin0 3B
__5_ = cos ¢(sin 6 cosh f — + icos G cosh 9
x! é?p p a0
__sinh B i)
psiné df
i P (3.6)
—sin ¢

p sin 8 cosh B %’

% = sin ¢(sin 6 cosh 8 58—- + icos 6 cosh 8 —c')%

P P
—_ Sln'hﬂ i)+cos¢_.__l—_.§_’
psin @ dp psinfcosh B do
—é—zcosei—isinei.
ox* o p
It then follows that
032 1 N
A= — —200t9—- N-, 3.7
40* 00 + sin’ @ (-1
where
Nil=L?—A7— 4, (3.8)

is the Casimir operator of the O(2,1) subgroup of O(3,1)
leaving the z axis (and the RMS) invariant. In terms of the
variables of sector I, this operator is given by

v=9 tanmnpd__ 19 (3.9)
B’ dB  cosh- 3 d¢°
We emphasize that these operators are not ‘“‘restric-

tions,” in the sense of projection, of the operators defined on
functions with support on all of space-time, or on the full
spacelike region. They are constructed as operators on func-
tions with support in the RMS as their natural domain.

Since the operator A defined in (3.7) (and associated
boundary conditions) is essentially different from the corre-
sponding operator applicable to functions with support on
the whole spacelike region, its spectrum is different as well.

Theinvariant measurein L (R *) onsector I of the Min-
kowski space is

du = p* sin® @ cosh B dp d¢ df3 db. (3.10)

As a complete commuting set of dynamical variables,
we use the subset of symmetric operators {we assume they
are self-adjoint in the following and shall explicitly find their
spectra),

{K,a,L:,N? A} (3.11)

The generators of the O(2,1) subgroup, leaving the qua-
dratic form x,”> + x,2 — x,;° invariant, are

H, =4, +id,

rel s

=e+""<-1%+tanhﬂ 8¢) (3.12)

and

71 J. Math. Phys., Vol. 30, No. 1, January 1989

d
L= —i— 3.13
3 I 3¢ ( )
The remaining generators of O(3,1) are
. a . d
A, = — I(COt 6 cosh B — — sinh —) 3.14
3 B B B 20 ( ,)
and
L, =L +ilL,
=e¢’¢(i (coshﬁ%— sinh B cot 8 %)
;oo i). (3.15)
cosh B d¢

Let us take, for a solution of (2.16) in the RMS, the
form

Y(x) = R(p)O(8)B(B)YDP(P). (3.16)
From (3.7) and (3.9) it follows that
- ~(m+)
¢)m ~ q)m ] 317
a¢_ () = > (#) ( )
ie.,
D, (4) = (1/2m)e+ V¥, 0<p<2m,  (3.18)

where we have indexed the solutions by the separation con-
stant m.

For the case m integer, ®,, (27 + €) = — ®,, (€) (itis
a two-valued function ); we shall see that this is the interest-
ing case. One must, in fact, use (3.18) form>0and @, (H)*
for m <0.

The operator A in (2.16) contains N 2; with (3.17), the
action of N2 on (3.16) is determined, for m > 0, by

N8, =2 jﬁz+tanhﬁ +M] o

cosh?
= (n*— 1B, (B, (3.19)

where n’ labels the separation constant for the variable 3.
The term (m+1)° is to be replaced by
(m —1)> = (|m| +1)* for m <0. We study explicitly only
the case m >0 in what follows.

As a final step in our treatment of the Casimir operator
A in (2.16), it follows from (3.7) and (3.19) that

AO(H) = [ (;9' + cot 9%)

1
~ Y e
+sin2(9(’z 4)] (©).

IV. SOLUTIONS OF THE ANGULAR AND
HYPERANGULAR EIGENVALUE EQUATIONS IN THE
RMS

In this section, we shall solve the eigenvalue equations
obtained by separation of variables. For the treatment of Eq.
(3.19), it is convenient to introduce the variable

(3.20)

¢ = tanh S, (4.1
where we note that — 1<£<1, and define
an(ﬂ) = (1 —§ )1/4Bmu(§) (42)
Equation (3.19) then becomes
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3B, &) 5 9B &)
> G
” P Emn (§) = 0

(1-¢%

(4.3)

+ m(m+1)~1

The solutions of this well-known equation are the associated
Legendre functions of the first and second kind,* P,,"(£)
and Q,,"({).

The normalization condition for the wave functions
(3.16) [with the measure (3.10)] is

1=fp3dpd¢d/3d95in20

X cosh B|R(p)’|®(O)|?|B(BY 2| P(S)]> (4.4)
and hence we must require that
JcoshB]B(ﬁ)|2dB<w. (4.5)
In terms of the variable &, this condition is
1 A
J (1 =8B dé < . (4.6)
-1
For v> 0, and 4 = 0,1,2,..., one has®®
‘ , 1 _Td+m
1 — 2y — 1 P '—\ — __ AN
I R e S
(4.7)

We shall show in an Appendix that the solutions for
M = m + n integer build the irreducible representations for
the O(2,1) subgroup, which constitute the admissible phys-
ical states. The associated Legendre functions of the second
kind do not satisfy the normalization condition (4.6).

We may choose for the normalized solutions (it is suffi-
cient to consider only n>0)

B (©) =V JTTA ¥ m+ W /TA +m—n)]
><I)m 7”(;)9

(4.8)

where m>n.

The case n = 0 must be treated with some care. For
n =0, the associated Legendre functions P,, ~ "({) become
the Legendre polynomials P, ({). The end points of integra-
tionin (4.6),{ = 4+ 1, correspond to f— =+ . In terms of
integration on S, e.g, in (4.5), the factor

cosh 8= (1 —£2)~ "2 in the measure is canceled by the
square of the factor (1 — £2)'/#in (4.2), so the integration
appears as

f \B(S)|* dp. (4.9)
The Legendre polynomials do not vanish at { = + 1, and
hence if B and P,, are related by a finite coefficient, this
integral would diverge. When n goes to zero, the wave func-
tion spreads along the hyperbola labeled by p, going asymp-
totically to the light plane; the probability density with re-
spect to intervals of S becomes constant for large |5 |. Events
associated with the two particles may therefore be found (for
sufficiently large separation in space) with 2 + 1 lightlike
separation out to remote regions of the tangent planes. To
maintain the normalization, the Legendre functions must be
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multiplied by a vanishing factor, and the probability goes
pointwise to zero (the wave function approaches a general-
ized eigenfunction). We shall therefore use, for this case, the
function defined by

B, (&) =Ve(l — £H°P, (&), (4.10)

where it is understood that the limit €e— O is to be taken after
the computation of scalar products; the factor (1 — £ )% is
a residue of the formula (AS 8.6.6; see also 8.1.4)

P, ") =(-1"1~- §)"“%PM(§> (4.11)

From (3.12) and (3.13), we see that the operators of O(2,1)
leave finvariant. We show in Appendix B that the functions
{B( EYD(P)} constitute the discrete series of irreducible
projective representation of O(2,1), and that it is not possi-
ble to use these representations to construct a ladder repre-
sentation of O(3,1).

We now turn to the solution of Eq. (3.20). Let us define
the variable

E=cos@ (4.12)
and the function

B(8) = (1 — £1)1*0(8). (4.13)
Equation (3.20) then becomes
[
2 ((1-¢ >—®(§>)
/3 dé§

(141 - ”'gz)@@) —0, (4.14)
where we have set

A=IU+1) -3 (4.15)

The solutions of Eq. (4.14) are proportional to the associat-
ed Legendre functions of the first and second kind, P,"(£),
Q,"(£). For n#0, the second kind of functions are not nor-
malizable [the measure, according to (3.10) and (4.13) is
the usual one for Legendre functions], and we therefore re-
ject these. It follows from the requirement of unitarity for the
representations of O(2,1) that we shall obtain, and normal-
izability, that / must be a non-negative integer (including 0)
or positive half-integer.

To understand the geometrical and physical meaning of
the quantum numbers / and », consider the set of events
parametrized by (3.1) with B =0 (these correspond to
equal time correlations),

X0 = 0,

| .

x7 psTnec.os &, (4.16)
x> =psin dsin @,
x*=pcosf.

This set of events lies in a three-dimensional subspace
parametrized by the usual spherical polar angles. The factor

Y,"(8,8) = (1/y27)e"®," (cos 6) (4.17)
in the separated solution (3.16), where
A _ n1/2
8,"(6) =(2’+1 (1 ”)') P/(cos8)  (4.18)
2+
transforms under rotations according to
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Y,"(6,¢) = z D'\ (1) Y,"(6',¢"), (4.19)
where the D', are the Wigner rotation functions of Euler
angles 7,,77,,75.2° Note that the Legendre functions of the
second kind do not admit this interpretation. We recognize
that the Casimir operator of the Lorentz group labels the
irreducible representation of the rotation group here, and
the Casimir operator of the O(2,1) subgroup labels the mag-
netic quantum number corresponding to orientations of the
three-dimensional space parametrized in (4.16). A general
point in the RMS is obtained from such a representative
point by performing a boost in the (x',x) plane. For

x, =y (x')° 4+ (x7)° =psin b, (4.20)
a boost with parameter /3 in the direction x results in
x; = x, cosh f3,

x"" = x, sinh f3, 4.21)

corresponding to the general form (3.1) (for some ¢). Each
event in the three-space parametrized by (4.16) can be
mapped in this way into a corresponding set of points in the
RMS. Conversely, each point in the RMS is projected into
this three-space by taking 5 = 0.

A reorientation of the three-dimensional space of (4.16)
by the transformation (4.19) admits the same construction.
A mapping from points represented in the reoriented space
into general points in the RMS can be carried out by a set of
active boosts in the new (x',x*) plane.

The result of the reorientation of the three-dimensional
equal time space is a reorientation of the entire RMS. After
the transformation, the new RMS is constructed, with
boundary planes tangent to the light cone, oriented along the
new z axis {we shall show in II that all possible orientations
must be considered in the specification of the two-body
state).

V. THE RADIAL EQUATION AND INVARIANT
SPECTRUM

The remaining ‘“‘radial” equation obtained from (2.16)
after separation of the angular and hyperangular variables,
taking into account (4.15), is

[L(_i_ii+ l<l+12>~g)+y(pz)]

2m\ dp* p Gp P
XR“(p) =K,R“(p). (5.1)
Let us put
R (p) = (1pI)R “(p). (5.2)
Equation (5.1) then becomes
R R I+ 1) 5
d’R@p) 2 dRp) 4D pan,
dp” P dp P
+2m(K, — V(p?))R ““(p) =0, (5.3)

which is exactly of the form of the nonrelativistic spherically
symmetric Schrédinger equation [the measure for the nor-
malization of R, according to (5.2) and (3.10), is just
p° dp]. The lowest mass eigenvalue for the case ¥« 1/p oc-
curs for the / = 0 state of the sequence /= 0,1,2,3,..., and
therefore the quantum number / plays a role analogous to
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that of orbital angular momentum in Eq. (5.3). In the interi-
or region II, the spectrum of A is continuous.’ In the full
spacelike region, the last step of separation of variables asso-
ciates the eigenvalues of A, which we have labeled with /,
with a differential equation in the noncompact independent
variable /8 [this can be seen from the structure of the para-
metrization (3.2) of the spacelike region, where 5 occurs in
all four variables]. In thiscase,” A = (/ + §) (/ + 3) — 3, for
1=0,1,2,..., and hence the lowest achievable mass state is
higher than the one we have obtained for wave functions
with support in the RMS. This is the source of the spontane-
ous breaking of the O(3,1) space-time symmetry of the dy-
namical equations that selects the RMS subspace of the
spacelike region.

For each nonrelativistic spherically symmetric potential
problem, one obtains a corresponding direct action potentiai
problem by the replacement of the relative radial coordinate
rbyp.

We shall argue below that the value of the full X opera-
tor (2.6) is usually determined (within a narrow interval)
by intrinsic properties of the constituents. It then follows
from the relation

K=P22M +K, (5.4)

that the mass spectrum of the two-body system is deter-
mined by the spectrum K, of the reduced motion. The two-
body invariant mass squared (center of mass energy
squared) is then given by

s,= — P> =2M(K, — K); (5.5)

it is therefore quantized according to the spectrum of the
relative motion, which coincides with the corresponding
nonrelativistic energy spectrum.

Our argument that X is determined by intrinsic proper-
ties of the constituents is as follows. Transitions between
bound state levels, involving changes in K, are induced by
perturbation, such as coupling to electromagnetism. To treat
such perturbations, we consider the addition of a 7-indepen-
dent operator AV (x,,x,) that has non-negligible values in
some limited space-time region (analogous to an adiabatic
perturbation) near, for example, x; = 0. Suppose, further-
more, that the wave function for the two-body system does
not significantly overlap this perturbation for 7 large and
negative. It is in this range of 7 values that we can consider
the stationary bound state problem that we have studied
here. At later 7, the wave function overlaps the perturbation,
and transitions among the states of the stationary problem
become possible. At large positive 7, the wave function no
longer overlaps the AV and hence the system may again be
found in a stationary state, perhaps different from the initial
one (for example, radiation may have occurred). Since,
however, A Vis independent of 7, the value of X is conserved
throughout the evolution. This situation is significantly dif-
ferent from the usual treatment of perturbations in nonrela-
tivistic quantum theory, where the turning off and on of the
perturbation in time causes transitions among values of the
Hamiltonian operator. We therefore see that the relation be-
tween P,? and K, should be determined by (5.4), with a
fixed value of XK.

To determine this fixed value of K, we now suppose that
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the system is exposed to a 7-independent (but space-time-
dependent) perturbation that brings the state of the system
past the ionization point, if such a point exists. In this state,
the constituent events may be separated by a large spacelike
distance, where the potential is negligible (provided, as we
shall see, a critical bound is not exceeded). Hence (see also
Reuse'?)

P p _pt P Mc?

K~ +-— + = — N

(5.6)
WM 2m 2M, | 2M, 2

where the last approximate equality follows from the assign-
ment of each of the particles to a small interval in the neigh-
borhood of its mass shell specified by its corresponding mass
parameter M, (if K varies over a small range, the two-body
invariant mass squared varies over the same range; for each
value of K, the quantization is determined by the discrete
values of K, ). With (5.6), the mass squared spectrum (5.5)
is

5, =M+ 2MK,. (5.7)

If the nonrelativistic energy spectrum has values small
compared to the particle rest masses, i.e., |K,| <Mc’/2, an
{nvariant condition for nonrelativistic binding, the two-body
center of mass energy spectrum is well approximated by

E,~Mc* + K, — \K,./Mc’. (5.8)

Up to the additive constant Mc?, the center of mass ener-
gy thus coincides with the nonrelativistic energy spectrum to
order 1/¢°.

The families of functions ®,,, B,,, for all values of m,n
consistent with a given value of / form a degenerate set of
solutions. The quantum numbers m,n of O(2,1) are a gener-
alization of the magnetic quantum number that plays an
analogous role in the corresponding nonrelativistic problem
[the quantum number m changes under the action of the
intrinsic O(2,1) subgroup].

It is interesting to note that the functions R ® and ¢
have a correspondence interpretation. If the density |#(x)|?
is used to study the expectation value of an observable that is
a function on space-time that is independent of 3 [for exam-
ple, a function of the O(2,1) invariant x,” + x,> — x,,°], one
may use the effective three-dimensional density given by
[the probability of occurrence of an event in d*x is
| (x)|? dx° d>x]

fl¢(x)|2 % dp = JlR(p)l |©(8)|*|()|*|B(B)|?

X p cosh Bsin 8 df

= (172m)|R(p) 18O, (5.9)

where ﬁ, @(0) coincide with the nonrelativistic wave func-
tions (with the remaining measure p’ dp sin 6 df d¢) for
which p is the radial coordinate, and, as we found for the
equal time correlation points at the end of Sec. IV, /is the
orbital angular momentum, and # the magnetic quantum
number [viz. (4.14) and (5.3)].
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VI. SOME EXAMPLES

In this section, we give mass spectra for some exactly
soluble problems, in particular, for the relativistic analog of
the Coulomb potential, for which

V(p?) = — Ze*/p, (6.1)

the four-dimensional space-time harmonic oscillator®®
Vip*) (6.2)

and the relativistic analog of the three-dimensional square
well potential, which has, in the relativistic case, a hyperbo-
loidal boundary,?' and for which

U p<aq,

In order to find the mass spectra and radial wave func-
tions for these examples, it is not necessary to solve new
differential equations. The radial equation (5.3) is exactly of
the form of the corresponding nonrelativistic problem, and
the solutions are known.

For the relativistic analog of the Coulomb potential, the
relative mass spectrum is given by

K,= —Z’me*'/28*(I + 1 +n,)%, (6.4)

where n, = 0,1,2,... . The wave functions Rp‘“’ are the usual
hydrogen functions™

— 1 2.2
=nep,

(6.3)

ﬁ,,u,/(p) =C, e X' 'L, ¥ (x), (6.5)
where L, *'* ! are Laguerre polynomials. The variable x is
defined by

x = (2Zp/ay)/(n, + 1+ 1), (6.6)
where a, = #/me?, and

C%  =Z(n )WV (n, +1+1)%n, +21+1). (6.7

The size of the bound state, which is related to the atomic
form factor, is measured according to the invariant p. For
the lowest level, n, = /=0,

<p)n“=/=0 =%a()' (6-8)
The total mass spectrum is then given by (5.7), i.e.,
1, =M?3c? — mMZ’¢*/# (n, + 1+ 1)°. (6.9)

For the case that the nonrelativistic energy spectrum has
value small compared to the particle rest masses, we may use
the approximate relation (5.8) to obtain

me*

271+ 1+4n,)?
1 Z'm*e"
8 M (I+1+n,)*
The lowest-order relativistic correction to the rest ener-
gy of the two-body system with Coulomb-like potential is
therefore

A(E, — M) 7% (_) 1
E, — Mc? 4 (+1+4n,)
For spinless atomic hydrogen (Z=1),
A(E — Mc*)=~9.7%x10"% eV, and E — Mc*~13.6 eV for
the ground state. The relativistic correction is therefore of
the order of one part in 10%. It is, however, about 10% of the

E,~Mc*— Z?

(6.10)

(6.11)
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hyperfine splitting #ic/21 cm~9.4 X 10~ eV. For positron-
jum, A(E — Mc?)=2X%107° eV and E — Mc*~=6.8 €V, s0
the relativistic correction is of the order of one part in 10°. It
is about 2% of the positronium hyperfine splitting Ja®
Ry~84Xx107*eV.?

For the four-dimensional harmonic oscillator, Eq. (5.3)
has the form

SR 2 dRw
=
dp* p dp
2mK 202 A
( m7u_m50 2__1([-t1))R(u)=0 (612)
7 # p’
As for the nonrelativistic case, we make the transformation
ﬁ(a)(p) = x"% " w9 (x), (6.13)
where
x = (mw/#)p’, (6.14)
to obtain
2, .. (a) (a)
xd w’ (1+_§__x>dw
dx* 2 dx
1 ( 3 K, )
+_ I+__._-— w(a)=0. 6.15
2 2 fw ( )
Normalizable solutions, the Laguerre polynomials

L,,“’ +172(x), exist*® when the coefficient of w'®’ is a negative
integer, i.e.,
K, =fio(l + 2n, + ), (6.16)

for n, = 0,1,2,... . The total mass spectrum is given by (5.7)
(the choice of X is arbitrary here since there is no ionization
point):

Sta, = — 2MK + 2M#io (1 + 2n, +3). (6.17)

For the case where the nonrelativistic energy spectrum has
values small compared to K, which we surmise may be of the
order of the particle rest masses,

E, =\ —2MK + %y (M /72K ) (I + 2n, +3
— (%) (ME/BIK Y (I + 21, + >

Arbitrarily setting K = — Mc?/2, one obtains

(6.18)

3 | #o’(I+2n, +3)°
E,~Mc* + #iw (l 2n, —) - .
+ + + 2 2 Mc?

(6.19)

Feynman, Kislinger, and Ravndal, Kim and Noz, and
others®® have studied the relativistic oscillator and obtained
a positive spectrum [as in (6.17) ] by imposing a subsidiary
condition suppressing time excitations; although the mecha-
nism is different, the restriction of the support of the wave
functions to the O(2,1) invariant RMS plays an analogous
role. No additional subsidiary condition is required; the set
of solutions forms a complete orthogonal set in every Lor-
entz frame*? (corresponding, in this case, to the induced
representation to be described in II).

We now turn to the O(3,1) symmetric square well. In
this case, the radial equation (5.3), with V(pz) given by
(6.3), has solutions of the form (for — U<K,<0)*?

75 J. Math. Phys., Vol. 30, No. 1, January 1989

Aj\2m(K, + U)/# p), p<a,

Bh,"i\[(—2mK,)/#p), p>a,

H

R @ (p) ={ (6.20)
where j, are spherical Bessel functions and 4,'" are spherical
Ijankel functions of the first kind [the radial measure for
R “)(p) is the same as for the nonrelativistic case]. Continu-
ity of the wave function and its derivative with respect to p at
the boundary p = a provides the condition for the allowed
values of K.

Let us call
2m K U 172 _ 2 K 172
-(EEO) ()

For z,=«,a, z,=k,a> 1, we may use the asymptotic forms
ji(2)~(1/z)cos(z — /2 — 7/2),

hl“'(z)~(1/z)ei(2v/ﬂ/2~ﬂ/2)’ (6.22)
to obtain the eigenvalue conditions

—cot k,a=ky/k, (leven),

tan k,a=K,/«k, (lodd). (6.23)

Sincex,> + k,> = 2mU /#*, the large z,,z, approximation re-
quires that

E=2mU/M)a*> 1. (6.24)
Defining
€=z, —E/2, (6.25)

the condition /£ < | then ensures, with (6.24), that z,and z,
are both large. It then follows that

ﬂ:(ﬁ_,— 1)‘”:1 _23 L.
LY Z" 3
For €/& = 0, solutions of (6.23) for / even are at (4n — 1)/
4 for integer n> 1, and for / odd, at (4n + 1)/4w for integer
n>0. Expanding the trigonometric functions in the neigh-
borhood of these values, and comparing with (6.25), we ob-
tain
z(n) =nr F /4 —2e/E

for / even or odd. Since, however, € depends on z,, we may
substitute (6.25) and solve for z,(n), obtaining

2,(n) = (1 —2/&) (nm + 1 F7/4) =nm, (6.27)

where n7> 1. Since /& =z,/& — 1/2 €1, our solution is

valid for values of n such that n/& ~1/4/2.
For this set of high levels, the spectrum is given by

K,~ —{U—nmT#/2ma’}. (6.28)
From (5.8), it follows that
nazn'zﬁz) 1 (U— n,,2172752)2
2ma* 2Mc? 2ma?
(6.29)

and the lowest-order relativistic correction to the relativistic
spectrum is

A(E, — Mc?) 1 ( nazﬂzﬁz)
E, — Mc* ~— 2Mc? 2ma® )’
The result (6.28) illustrates in a simple and explicit way
a rather remarkable relativistic effect. Since an indefinite in-

(6.26)

Ea =Mc’ — (U——

(6.30)

R. Arshansky and L. P. Horwitz 75

Downloaded 15 May 2007 to 193.136.128.7. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



crease in the well depth Uis in the framework of the approxi-
mation we have made in arriving at (6.28), which can be
written alternatively as

K= i £ (1-2240),

2ma*® 2
it is evident that the center of mass energy squared,

s, =2M(K, — K), (6.31)
can eventually become negative for any fixed value of K, for
example, — Mc?/2, as asserted in (5.6) (in this case, for
U= Mc?). The argument leading to K~ — Mc?/2 cannot,
therefore, be justified in case the well depth U exceeds Mc?
by a significant amount. This argument assumed that at, or
above, the ionization point, the two particles may separate,
and that the corresponding free motion can be consistent
with p,>~ — M,*c* and p,>~ — M,*c*. This would imply
that the interpretation of the bound state as a composite
system of the two particles with normal asymptotic behavior
could be tenable. In this example, however, we see that if the
potential well is sufficiently deep, this argument must fail,
and ionization results in quasifree particle states for which
the asymptotic values of p,%, p,” must depend on the well
depth (since the potential is bounded by a hyperboloid in
space-time, only asymptotically approaching the light cone,
it may be argued that unless there is compact support in ¢,
there is always some small overlap of the wave function with
the potential well no matter how large the spacelike separa-
tion). The drift of the particles out of the interaction region
may be entirely suppressed, in fact, if there is a mechanism
(such as self-energy) that induces a strong spectral enhance-
ment of the asymptotic states of the two particles in the
neighborhood of a definite value of the mass. In any case, the
notion of a bound state as a composite of two particles with
intrinsic properties determined in their free states becomes
untenable when the binding potential is sufficiently strong.
In this case, K must be treated as an unknown parameter, to
be fixed to the observed spectrum. In the nonrelativistic lim-
it, for which ¢— o0 (relative to all velocities), there is no U
sufficiently large for this phenomenon to occur, and hence it
must be understood as a relativistic effect.

The same phenomenon occurs for the Coulomb type
potential, e.g., for Z sufficiently large, as can be seen from
(6.9). The assignment of K~ — Mc’/2 becomes untenable
at

Z2Z(M/MM,)(1/a). (6.32)
If M, < M,, the condition (6.32) becomes
ZN(M./M) (1/a). (6.33)

so that for one electron in the Coulomb field of a nucleus (for
M,~27ZM ) thebound on Z for tenability of compositeness
is very high ( ~5x10%).
For a system of two particles of equal mass parameter,
Zz22/a, (6.34)

which is of the order of magnitude of the value at which the
spectrum of the Dirac equation becomes unstable. For a
Coulomb-type strong interaction, where a ~ 1, one sees that

76 J. Math. Phys., Vol. 30, No. 1, January 1989

a simple picture of compositeness becomes questionable for
any Z>1.

Vil. SUMMARY AND DISCUSSION

The eigenvalue equation for reduced motion (2.9),
where V(pz) is an O(3,1) symmetric potential function, can
be solved by separation of variables in the angular and hyper-
bolic angular coordinates (3.1) that range over the restrict-
ed Minkowski space (RMS) shown in Figs. 1 and 2 (the
relativistic Coulomb-like problem can also be separated in
hyperparaboloidal coordinates in this region; we shall dis-
cuss this procedure, along with the dynamical group of rela-
tivistic hydrogen, making use of a relativistic Runge-Lenz
vector, elsewhere). The sequence of separation equations is
in order ¢,8,0,p where S is a hyperbolic variable [in the full
spacelike region, described by (3.2), the order of separation
is ¢,6,3,p1. After the last stage of separation of variables, we
are left with an equation in p that determines the spectrum.
In the case of the full spacelike region, this radial equation
depends on the separation constant for the 8 dependence; in
the RMS, it is the separation constant for the 8 dependence
[which corresponds to the O(3,1) Casimir operator] that
enters. In the nonrelativistic limit, O(3,1) is deformed to
O(3) (the relative variables ¢, p° vanish in this limit), and
the eigenvalues of the O(3,1) Casimir operator become
eigenvalues of the O(3) Casimir operator, i.e., the angular
momentum. Separation of variables in the RMS therefore
has a clear correspondence to the nonrelativistic problem.
The spectrum one finds in the full spacelike region and in the
RMS are different. The lowest bound state in the RMS is
lower than that found in the full spacelike region for V'« 1/p,
the relativistic generalization of the Coulomb potential.

Cook'® has studied an equation similar to (2.9) with
gauge invariant form for the electromagnetic interaction. In
his approximations, the problem can be put into correspon-
dence with the relativistic Coulomb potential problem we
have studied. He obtains a mass spectrum proportional to a
quantity of the form — (n, + /+ 1) ~~. This denominator is
always half-integer squared and does not go to the Balmer
form in the nonrelativistic limit. Its lowest value is higher
than that of (6.4). As pointed out by Cook, the replacement
of one of his quantum numbers (/) by a half-integer to com-
pensate for this problem would lead to incorrect angular
dependence.

Cook furthermore estimated the relativistic corrections
both for Bohr-Sommerfeld quantization of his classical so-
lutions (in the full spacelike region) and for a modified ver-
sion of the treatment of the differential equations in the
quantum case with extended sources admitting half-integer
values for his analog of our n,. He found that the (a/n)*
term [ which we obtained in (6.10) ] cannot be accounted for
in his treatment.

The angular functions P;”(cos 6) appearing in the solu-
tions of the O(3,1) symmetric problem are in precise corre-
spondence with those of the nonrelativistic case. The quan-
tum number / specifies the O(3,1) Casimir operator, but it
occurs in the relativistic radial equation in the same way that
orbital angular momentum enters the nonrelativistic radial
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equation; in the nonrelativistic limit, O(3,1) is deformed to
0O(3), and / becomes the orbital angular momentum. The
quantum number 7 specifies the O(2,1) Casimir operator; it
becomes the magnetic quantum number in the nonrelativis-
tic limit. The mass levels for the relativistic problem are de-
generate in the O(2,1) quantum number, but not, in general,
in /.

The restriction of the relative coordinates to the RMS
corresponds to a restricted range of correlations available to
the two events propagating in a bound state, i.e., to the range
of x,*—x,* available at each 7. We have assumed, in comput-
ing the full spectrum with functions whose support is re-
stricted to the RMS, that this correlation is maintained for
excited states as well.

The selection of wave functions defined on the O(2,1)
invariant RMS corresponds to spontaneous symmetry
breaking of the O(3,1) Lorentz invariance of the dynamical
differential equation. The representations of O(3,1) genera-
ted by the solutions of the differential equation are, as we
shall show in I1, of induced type. Under the action of the full
0(3,1), the solutions defined on the RMS specified by a
spacelike unit vector (e.g., a unit vector along the z axis, as
for the coordinate system used in this paper) undergo a
Wigner transformation under the little group O(2,1), and
are transported along an orbit parametrized by this spacelike
vector whose range, under Lorentz transformation, is a sin-
gle sheeted hyperboloid.

Due to the success of our choice of the RMS for the
relativistic Coulomb problem, we have assumed that this
region provides the correct correlations for two-body bound
state O(3,1) symmetric potential problems in general, and a
few examples are worked out.

Previous treatments of the relativistic harmonic oscilla-
tor problem>” have imposed a subsidiary condition to ensure
that timelike excitations are suppressed. Imbedding the
bound state in the RMS instead of the full spacelike region
eliminates the need for this condition. It replaces an explicit
constraint by the introduction of coordinates whose free
variation has sufficient structure to ensure that all excita-
tions lie within a Hilbert space that has a consistent physical
interpretation (positive norm); the spectrum corresponds to
the excitations of just three harmonic degrees of freedom.

The relative mass eigenvalues of the relativistic square
well potential problem were computed for a range of high
levels for which the transcendental equations for the spec-
trum can be solved explicitly. It was found that, with the
condition that the total X of the system takes on its asympto-
tic expected value for free particles approximately on mass
shell above the ionization point, the well depth can be chosen
sufficiently deep (in this case, UZ Mc?) that the total invar-
iant rest energy squared of the system can become negative.
The assumption that the constituent particles behave asymp-
totically, above ionization, as free, therefore becomes unten-
able. A similar phenomenon occurs for Coulomb-type bind-
ing [at Z2 (1/a)M /M M, ]. For particles of equal mass,
this criterion is met at the order of magnitude at which the
Dirac spectrum becomes unstable, but for an electron in the
Coulomb-type field of a heavy nucleus, the bound is very
high (~5x 10°). For strong coupling, of the order @ ~ 1, the
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assumption that the constituents can be assigned on-shell
values asymptotically becomes questionable for any Z>1.

We emphasize that this critical value of the binding does
not correspond to an instability in the spectrum of the dy-
namical evolution operator. It implies a limit to the depth of
binding for which the simple notion of a bound state as a
composite system of two particles with intrinsic properties
determined as independent free particles above ionization
becomes untenable. In the nonrelativistic limit, no bounded
potential can produce this phenomenon, and hence it must
be understood as a relativistic effect.

The solution of the problem of the relativistic bound
state in an O(3,1) symmetric potential that we have given
provides a mass spectrum that is the same as the correspond-
ing nonrelativistic Schrodinger energy spectrum; this mass
spectrum, up to the additive constant Mc?, becomes the ener-
gy spectrum, and the wave functions acquire their usual non-
relativistic interpretation (for which / becomes the angular
momentum, and # the magnetic quantum number), in the
nonrelativistic limit. The structure of the theory therefore
satisfies a correspondence principle.
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APPENDIX: DISCRETE SERIES OF IRREDUCIBLE
REPRESENTATIONS OF O(2,1), THE QUANTUM
NUMBERS, AND THE NONEXISTENCE OF A LADDER
REPRESENTATION FROM THIS SERIES FOR 0(3,1)

The representations of SO(2,1) and its double covering
SU(L,1) have been studied by many authors.’>** Barg-
mann,>? in particular, has discussed the basis functions with
support in sector I, where x,2 — x, 20. We are interested in
the wave functions on a Hilbert space in the RMS, where
x,2 —x,%<0.

We show explicitly in this Appendix that the solutions
(3.18) and (4.8) that we have obtained for the 8,¢ parts of
the differential equation (2.16) constitute the double-valued
discrete series of irreducible projective representations of
0(2,1).
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The operators H_ and H, defined in Eq. (3.12) act as
raising and lowering operators for the index m, since

[L3’Hi]=iHi- (Al)

We now show that the k = 0 element of the sequence (it
is convenient to replace m by n + k)

Xn+ k _’l(§’¢) EBII+ k.o (B)(Dn+ k (¢)

= (1=¢9"B, . 1, (OP, , ( ()
(A2)
satisfies
H_y, "(.¢)=0. (A3)
In terms of the variable { = tanh 3,
H, —es(=i- §_§ ¢) (A%)

and Eq. (A3) becomes

(=62 Z+(n+5)¢ v @ =0 a9
Using the relation (AS 8.6.17),
o 1 (1 _é—Z)n/Z
P = ,
) r'(l+n) 2"

and (4.8), (A3) follows immediately.
We now study the action of H__ on this lowest state:

H. x, "(54$)
_ b _ _ i —n
—e ( i(1—¢%) §+z§(n+ ))x (5:8)
= i\/2n + 1 X,,+| 7”(§;¢)-

In general,
H+Xn+/\ 7"(§¢)

(1 +k+2n))'/2
B F( Ol +k)

(A6)

1_;2)”4

X{(n+k+ 1)§P11+k—"(§)

5, 0 o
—(=6 Z P (©] ®100i1 @) (AD)
It follows from (AS 8.5.3) and (AS 8.5.4) that
2 a —n
(l—g_)_a?Pn—{—k (;)

=(n+k+1)4P,, "5
—2n+k+ 1P, ., "),
and hence (A7) becomes
H.x,,.« "(59)
=N+ DRn+k+ Dy, 1 "(58).
The Hermiticity of 4,, A, then implies that

(A8)

—n —

(Xn+k ’H—Xn+k+l )
— —n — Yk
_(Xn+k+l ’H+Xn+k )

= —ik+DQ2n+k+1)

and hence [since H_ can only lower the & value, according
to (Al)]
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—ifk+DRn+k+ Dy, ..~ "
(A9)

This result is, of course, consistent with the commutation
relation

[H, H_ ]= —-2L, (A10)

which follows from the formal commutation relations of the
Lorentz group algebra

[M,u\’,M(t/J] - _ l'(gv(tMﬂﬂ . gﬁ;tMa\»
— gPM 4 g M), (Al1)

For the O(2,1) subalgebra it follows from (A8) and (A9)
that

(H+H— _H—H+)Xn+k

—n __
H—Xn+k+l -

—n__ _2(n+k+il>),¥n+k7"~
(A12)

We now note that the complex conjugate of {y, , , ~ "}
transforms under H , in a similar way. We obtain in this
way another, inequivalent, representation with the same val-
ue of the Casimir operator for O(2,1) [these elements corre-
spond to the replacement of m + 1 by m — | for m <0 in
(3.18) and (3.19); as we remarked after (3. 19), we shall
continue to consider m as positive]. Since the functions
B, ., arereal, we consider

X"+k _"‘(§,¢) = (1 _§2)I/4§n+k,n (§)¢"+/\'*(¢)'

(A13)

Since, according to (A4),
H *= —-H_, (A14)

it follows from (A2) that
H,x, " ({4$) =0, (A15)

and hence there is a sequence with a highest element. The
Clebsch~Gordan coefficients are determined by (A8) and
(A9). Using (A14), one obtains

H Xyim "(58)

=i(k+DQn+k+ Dy, i1 (D),
) O SR ()

= —ifk+ 1)2n+k+ Dy, .« " (50).

(A16)

In fact, this complementary representation corresponds
to charge conjugation. Since the operators A,, 4>, L, are
Hermitian, complex conjugation is equivalent to the trans-
pose. Replacing the operators by their negative transpose,
which corresponds to group theoretical charge conjugation
(to be denoted by C), leaves the commutation relations in-
variant. Under this action,

H ‘= -H *=H_ , HY°C
L= —L*=1L,,

where the last follows from (3.13). The two representations
are therefore related by charge conjugation.

The O(2,1) Casimir operator defined in (3.12) is, in
this set of representations, given by

= —H *=H

+9

(A17)

N*=L’—A’—A>=L>—{(H, H_+H_H,)
=L,(L;—1)—-H_H_. (A18)
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With the help of (A8) and (A9) [or, correspondingly,
(A16)], and the action of L, one obtains, as required by
(3.19),

Ni=n*—1 (A19)

The unitary irreducible representations of O(2,1) are
single or double valued, and hence m must be half-integer or
integer, the latter corresponding to the double-valued repre-
sentation. As we have seen, k is integer valued, and therefore
n must be half-integer or integer, also. Normalizability con-
ditions on the associated Legendre functions then require
that / be, respectively, half-integer or integer. As we have
remarked in Sec. V, the lowest mass state (for the soluble
problems we have considered) corresponds to =0, and
hence we shall only consider the integer values of /. This is
consistent with our identification of the spectrum of X, of
(5.3), with that of the corresponding nonrelativistic poten-
tial problem, and the correct behavior of the angular func-
tions in that limit. We are therefore dealing with the double-
valued representations of O(2,1).

In the following, we show that the operators 4;and L ,
{which are not in the algebra of O(2,1)] move the set of
eigenfunctions we have found out of the Hilbert space.

In terms of the variables £,£,4, it follows from (3.14)
and (3.15) that

|

AB.fl.n + K - "(G)B)¢)

_ _l.\/;(l“(l +2ﬂ-i—k))‘/2 [(21+1)((l—n)!)]'/2

C(1+4) 2 (I + n)!
1_52)1/4}) —n ipn ]
+§(1_§3 n+ Kk (g) ag ! (5) .

Using identities for the associated Legendre functions,**’
we may write (A24) as

Asfrni v "(0.8.8)
_ i (k(2n+k+1)(l—n)(1+n+1) 72
_7[ n(n+1) )
Xfinvw " (6,8,8)

_((1 +hCnt+kyU+m—n+ 1))'/2
nn—1)

Xf},n+k e I(G’B,¢y)] . (A25)

This recursion relation is similar in form to that obtained
from the ladder representation based on O(3) (Ref. 36)
which, for the spinless case (/," =0, so that 4, =0), is
given by*®

Ay =C NI —m=E e —Cp

XA+ 1) —m"” I Lam's (A26)
where
12 j2N12
c, =f(”_,&_) . A4, =0,
4/"7 —1
andm'= —[', - I'+ 1,.,011"=1/,l,/ + 1,....
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e (E) 21

e E T

and
e s ()
xaig—i(i:gz)mfa—(;). (A21)

The action of these operators on the normalized eigenstates
discussed above does not lead to a ladder representation for
0O(3,1) [unlike the case of the reduction O(3,1)CO(3)
(Refs. 35 and 36)]. Let us study, for example, the action of
A, on the normalized wave function f;,, ~" (taking again
m=n+ k),

.fl.n+k a "(9,3,(15) = ®I"(0)Bn+k_n (ﬂ)(b” + k (¢)7

(A22)
where
n 21+1>((1_n)!)]]/2 n 2y —1/4
®,"(8) = P 1-— .
o =[(EE) (5] prwra—en
(A23)

With the definitions (4.2) and (4.8), and (A20), we obtain

_ F2\3/4
<I>.,+k<¢>{§(‘ ;) P,"<§>ai§P,,+k"(§>

1—¢2

(A24)

-

The correspondence can be easily seen by recalling that
k =m — n, and that n + | [which determines the value of
the O(2,1) Casimir operator] should be put into correspon-
dence with the angular momentum quantum number /"’ of
O(3). Hence, in the sense of this correspondence,

kQn+k+ 1)~m?—1" (A27)

where m’'~m + 1. In the second coefficient, k—k — 1 is
equivalent to /' —/' + 1. The second pair of factors in the
radical of the first coefficient of (A25) corresponds to

(—nm)U+n+1D~1"—17, (A28)

where [, the lowest angular momentum of the correspond-
ing tower of O(3) representations, is identified with /4|
[ we are considering the (/ 4 1,0) double-valued representa-
tion]. The corresponding factors of the second term are simi-
larly obtained by the substitution /'—=/'+ 1, inducing
n—n—1.

The recursion relation (A25), however, cannot be used
to generate a proper ladder representation based on O(2,1),
since, for example, applying A, to f,,, ., ~ " for n =1 pro-
duces a term proportional to f; , , ,°. As we have pointed out
in the discussion following Eq. (4.8), we can consider this
function to be normalizable by the procedure of using the
functionf,, , , ~ “and taking the limit € — O after integration.
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The compensation for the singularity generated by the mea-
sure (3.10) for this function is obtained from the normaliza-
tion factor in (4.8). The explicit appearance of the singular-
ity 1/yn—1 in (A25) for n—1 is precisely from this
normalizatton. Since no such regularization procedure (by
normalization) is available after operation with 4,, we see
that this operator is not defined on f;, , , '; it shifts this
function out of the Hilbert space.
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