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Binary Collision Orbits and the Slingshot Effect
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We derive the equations for the gravity assist manoeuvre in the general 2D case without the constraints of
circular planetary orbits or widely different masses as assumed by Broucke1, and obtain the slingshot conditions
and maximum energy gain for arbitrary mass ratios of two colliding rigid bodies. Using the geometric view de-
veloped in an earlier paper by the authors2 the possible trajectories are computed for both attractiveor repulsive
interactions yielding a further insight on the slingshot mechanics and its parametrization3. The general slingshot
manoeuvre for arbitrary masses is explained as a particularcase of the possible outcomes of attractive or repul-
sive binary collisions, and the correlation between asymptotic information and orbital parameters is obtained in
general.

I. INTRODUCTION

The slingshot or gravity assist manoeuvre1-7 is often consid-
ered as part of a restricted three-body problem and its use
has been associated in the literature mostly with spaceflight
strategies8-10 with some applications in astrophysics for the
study of mass ejection from binary clusters11 and the proposal
of new General Relativity tests12. In reality, the design of
spacecraft trajectories between two planets is a many-body
problem except for the slingshot part, which is in most de-
signs well approximated by an elastic binary collision. This
work focuses on the slingshot manoeuvre as a particular case
of a general binary elastic collision between massive objects
subjected to central interaction forces. In a previous work2 the
geometric determination of binary collisions was introduced,
and the possible outcomes were in some cases surprising3. We
have obtained a parametrization of all possible outcomes of
a binary elastic collision in an arbitrary frame, and from the
mass ratios and initial velocities as asymptotic initial condi-
tions we obtain a picture not only of the final asymptotic ve-
locities in terms of a single parameterq in the 2D case, but also
the detailed description of the two-body motion that fits these
asymptotic data in the case of the gravitational or coulombian
interaction. We are therefore in condition to determine which
precise orbital parameters must be chosen to obtain a desired
effect on a flyby of a satellite about a planet or star, be it a
gravity assisted boost or capture. The conditions for a gravity-
assisted manoeuvre of a satellite are often loosely associated
to a flyby in front or behind the planet.1 Both in the case of
attractive as well as repulsive collision forces, a harder look
must be performed to really grasp what the critical ingredient
is. In particular we show how the geometry and the timing of
arrival at the point of closest approach (periapsis), to witthe
relative position of the bodies with respect to the normal tothe
Center of Mass velocity

Ó
Vcm at that point, determines the out-

come of the collision and refine the phenomenological rule-of-
thumb that a flyby in front of the planet results in a slowing of
the satellite whilst a flyby behind the planet’s trajectory would
result in a boost.13 In fact, the asymptotic description of a col-
lision is somewhat elusive in this respect. By scaling out the

interaction in all space and time dimensions there is naturally
a loss of information of precisely where and when are the two
bodies for given initial velocities, so a determination must be
made as to what corresponds in a real problem to these times
and positions. It could be claimed that these initial velocities
should be those of the bodies when their distance is equal to
the sum of the radii of their respective spheres of influence14.
But since this too is a fuzzy concept this is not much of an
improvement. In fact, that information is only present when
enough conditions are specified to determine the collision out-
come uniquely.15 Thus, in the 2-dimensional case, the circum-
ference of possibilities for the velocity outcomes of one of
the bodies encodes the missing information about where the
bodies initially are simultaneously when they have the given
velocities. This can also be translated into an impact param-
eter in the non-inertial body-frame for one of the masses (or
reduced-mass frame) but that begs the question of viewing the
collision in the laboratory frame. In this paper the assumption
will therefore be made that att = 0 the Center of Mass (CM)
will be at the origin of the laboratory frame (LF).

Diagrams like the one in Fig. 1, introduced in a previous
work2, are used to correlate the asymptotic information, pro-
vided by initial velocities far away from the periapsis, with
the possible eccentricities, focal distances and other orbital
parameters for open Keplerian orbits in case of gravitational
attractive or Coulombian repulsive scattering. These diagrams
depict the relation between incoming laboratory frame asymp-
totic velocitiesÓvo and Óuo, of massesmv andmu respectively,
and their final asymptotic velocitiesÓv1 andÓu1, through a com-
putation involving the scattering angleq of themu mass, mea-
sured in its initial asymptoticu-body frame from the direc-
tion of the incoming relative velocityÓvo - Óuo of themv mass.
In that u-body frame the circumferences of possible veloc-
ity outcomes are easily drawn and their image in the labora-
tory frame can easily be deduced, thus yielding information
about the possible directions and magnitudes of asymptotic
final velocitiesÓv1 and Óu1 for both masses. In this way the
orbits can be viewed in the laboratory frame and a study can
be made, for instance, for the optimal incidence angle on a
planetary fly-by that delivers the maximum allowed velocity
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boost in a chosen direction. The energy gain is obtained both
in the case of idealized point particle collisions and extended
object collisions, where the periapsis distance is constrained
by a minimum value below which the collision is no longer
elastic. The relation of this asymptotic information with the
actual trajectory can also be displayed using the fact that the
reduced-mass-frame trajectory axis and asymptotic directions
are already included in these diagrams, and thus also all theor-
bital parameters can be deduced or introduced here. The final
velocities can be determined from these diagrams by specify-
ing the scattering angleq of Óu1 - Óuo relative to the inbound
directionÓvo - Óuo in the initial frame of one of the bodies (the
u-bodySuo

frame in Fig. 1). This angle specifies the asymp-
totic direction of the scattering of theu-body in theSuo

frame
where it was initially at rest, the reference direction being de-
fined by the CM velocity

Ó
Vcm - Óuo = mv

mv+mu
IÓvo - ÓuoM in that

frame. Denoting byÓuq the direction defined byÓu1 - Óuo, andÓwq its orthogonal direction in the plane of the collision, we
deduce from the momentum and kinetic energy conservation
laws that2 ÅÅÅÅÓu1 - Óuoü = 2mv

mv+mu
IÓvo - ÓuoM × Óuq ,

(1)Óv1 - Óuo = Ón + Óu1 - Óvo,

with Ón = 2 ÅÅÅÅÓvo - Óuo
ÅÅÅÅ sin(q) Ówq , from which followsÓu1 = Óuo + 2mv

mv + mu

ÅÅÅÅÓvo - Óuo
ÅÅÅÅ cos(q)Óuq , (2)Óv1 = Óuo + ÅÅÅÅÓvo - Óuo

ÅÅÅÅ Kmv - mu

mv + mu
cos(q) Óuq + sin(q) ÓwqO .(3)

together with the orthogonality equationsÓn × IÓu1 - ÓuoM = 0 , JÓd - IÓu1 - ÓuoMN × IÓu1 - ÓuoM = 0 ,

(4)J ÓD - ÓnN × Ón = 0 ,

whereÓ
d = 2( ÓVcm - Óuo) = 2mv

mv + mu
IÓvo - ÓuoM ,

Ó
D = 2(Óvo - Óuo) .

(5)
In the interesting limiting case wheremv � mu and Óvo »Ó
Vcm » Óv1 we can anticipate that theÓv1 circumference reduces
to a point at

Ó
Vcm, meaning that themv body motion is prac-

tically unaltered by the collision. Then
Ó
d » Ó

D = 2 IÓvo - ÓuoM
and, for given magnitudesvo, uo, this is maximized for head-
on collisions which provides the greatest magnitude variabil-
ity for the outboundÓu1. This is the case of planetary flyby
by satellites for attractive orbits, and it is immediately appar-
ent that scattering in the direction of the planet’s velocity (if
possible) has the potential for more dramatic accelerationor
deceleration of the satellite. This is however limited by the
fact that planets have large radii (eventually including anat-
mosphere) and the satellite cannot get closer at periapsis than
that radius. Thus some values forq may be excluded as un-
practical.

II. DETERMINATION OF ORBITAL PARAMETERS

The binary elastic collision diagrams such as that shown in
Fig. 1 provide several simultaneous views of the event, to wit
the laboratory, Center of Mass and body frames. The pos-
sible velocity outcomes for both masses are parametrized by
the angleq that Óu1 - Óuo makes with the reference directionÓvo - Óuo, which is also the direction of the CM velocity in theSuo

initial body frame. In this frame, wheremu was initially
at rest,q is the scattering angle of the massmu after the colli-
sion with an incoming massmv. The range ofq Î A- p

2,+ p
2E

encompasses all possible results in a binary elastic collision
with given initial velocities. Thusq works in theSuo

frame
as the extra parameter needed to determine the outcome of
the collision uniquely, a role that is usually attributed tothe
‘impact parameter’b (the distance in reduced-mass-frame be-
tween the origin and the asymptotic line drawn from the in-
coming body, with direction this body’s asymptotic relative
velocity). This impact parameter can only be precisely de-
fined in the reduced-mass frame, which we will assume here
to be the instantaneous body-frameSv of the massmv (since
we are ultimately interested in exploring all directions for the
fly-by about a planet of massmv > mu, the satellite will be
henceforth represented by theu-body of massmu).

In the Sv body-frame (BF) with axes parallel to those
of the laboratory frame (LF), the relative motion of the
two masses will appear as that of a single reduced massm = mv mu/ (mv + mu), at the relative positionÓr ¢¢m of muÓr ¢¢m º Ór ¢¢

u = Óru - Órv, (6)

which appears to be moving under interaction forces pointing
to a fixed total massM = mv + mu at the origin, where the
other mass (mv) is at rest, and this can actually be computed
for sufficiently well behaved forces.

Once the (BF) motionÓr ¢¢m (t) is obtained, and assuming that the
frame directions are parallel to those of the laboratory frame,
we may return to the (LF) description by noting that, in the ab-
sence of external forces, the CM motion is uniform and there-
foreìïïïïïíïïïïïî Órv(t) = Ó

Rcm(t) - mu

M
Ór ¢¢m (t) = Ó

Rcm(0) + Ó
Vcm t - mu

M
Ór ¢¢m (t) ,Óru(t) = Ó

Rcm(t) + mv

M
Ór ¢¢m (t) = Ó

Rcm(0) + Ó
Vcm t + mv

M
Ór ¢¢m (t).

(7)
This is an approximation in the real case of planetary flyby be-
cause of the gravitational influence of the sun, but for the du-
ration of the encounter, assumed to start and end at the bound-
aries of the planetary sphere of influence, the effect of the third
body is assumed to be negligible.16
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FIG. 1: Collision diagram for different massesmv > mu with initial velocitiesÓvo,
Óuo, and its relation with the collision diagram as seen from

theu-body (massmu) initial rest frameSuo
. In this frame the circumference with diameter

Ó
d = 2( ÓVcm- Óuo) is the locus of all possible outcomesÓu1 - Óuo parametrized by the scattering angleq. A choice ofq determinesÓu1 - Óuo and an orthogonal vectorÓn restricted to a circumference

of diameter
Ó
D = 2(Óvo - Óuo). The outbound velocityÓv1 - Óuo is geometrically defined asÓn + Óu1 - Óvo and lies on a circumference centered onÓ

Vcm - Óuo with radius|Óvo - Ó
Vcm|. The anglesq andj represent theu- andv-scattering angles relative to the incoming velocity of theCM in the

u-body initial rest frame andj¢ is the scattering angle in the CM frame.

A. VIEW FROM THE v-BODY FRAME Sv (REDUCED MASS

SYSTEM)

If the (BF) reference directions were rotated and scaled with
respect to the (LF) directions in such a way thatÓr = A × Ór ¢¢,
with A Î O3 the rotation matrix, then we should write (7) in
the form ìïïïïïíïïïïïî Órv(t) = Ó

Rcm(0) + Ó
Vcm t - mu

M
A × Ór ¢¢m (t) ,Óru(t) = Ó

Rcm(0) + Ó
Vcm t + mv

M
A × Ór ¢¢m (t) .

(8)

Viewed from the reduced-mass frameSv attached to thev-
body of massmv with reference directions rotated through

Ó
L

byA-1(f), the asymptotic incoming velocityÓu ¢¢
o of theu-body

of massmu obeys (see Fig. 2)A × Óu ¢¢
o = Ó

Uo = Óuo - Óvo , (9)

which is anti-parallel to the diameter vectors
Ó
d and

Ó
D of the

reference circumferences. Likewise, the asymptotic outgoing
velocity Óu ¢¢

1 for theu-body in this frame verifiesA × Óu ¢¢
1 = Ó

U1 = Óu1 - Óv1 . (10)

On the other hand, in the reduced-mass frameSv the mean
force acting on theu-body during the collision is proportional
to that body’s total linear momentum variationDÓp ¢¢m in said
frame andA × DÓp ¢¢m = mA × IÓu ¢¢

1 - Óu ¢¢
o M = m IÓu1 - Óuo + Óvo - Óv1M . (11)

Since conservation of linear momentum in the laboratory



4

frame impliesDÓv = Óv1 - Óvo = mu

mv
IÓuo - Óu1M = -mu

mv
DÓu , (12)

(11) is always the sum of collinear terms parallel toÓu1 - Óuo,
and in factA × DÓp ¢¢m = m IDÓu - DÓvM = mu (Óu1 - Óuo) = DÓpu . (13)

In the reduced-mass frameSv, for Newtonian or Coulombian
type interactions, the asymptotic motion is known to be conic
with one focus at the origin17. In particular for strictly positive
total initial energyE ¢¢ > 0 in the (BF), a gravitational colli-
sion must be an hyperbola concave to the focus at the origin,
while for repulsive Coulombian forces the hyperbola branch
is convex. The direction ofDÓpu in the (LF) then also deter-
mines the hyperbolic axisÓe ¢¢

x for theu-body trajectory inSv,
and its angleJ¡¥ with the asymptotes-Óu ¢¢

o and Óu ¢¢
1 is also

related to the parameter angleq (see Figs. 2 and 3). Once
the anglef between the axisÓe ¢¢

x µ DÓp ¢¢m of the hyperbola and
a chosen laboratory frameÓex direction is known, the rotation
matrixA(f) such thatÓr = A × Ór ¢¢ is determined asA(f) = æççççççè cos(f) - sin(f) 0

sin(f) cos(f) 0
0 0 1

ö÷÷÷÷÷÷ø . (14)

assuming that the constant angular momentum is
Ó
L = Lz

Óez.

According to the diagrams in Fig. 2, for a given incoming
directionÓu ¢¢

o in theSv frame, making an anglefo = tan-1 CÓvo - ÓuoG (15)

with theÓex direction in the LF frame, the directionsf = fo+q
of the possible axisÓe ¢¢

x µ DÓp ¢¢m are in the rangef Î Bfo - p
2

,fo + p
2
F . (16)

The sign off - fo = q is an indication of whether the incom-
ing motion is from above or below the axisÓe ¢¢

x = A-1(f) × Óex . (17)

The anglef = fo corresponds to the situation whereÓe ¢¢
x is

aligned withÓu ¢¢
o , i.e. a head-on collision withq = 0.

In theSv frame, the angleJ-¥ from theÓe ¢¢
x axis to the asymp-

totic direction-Óu ¢¢
o = A-1(f) × ÓUo is J-¥ = tan-1 I-Óu ¢¢

o M = q
and it determines the boundaries for the actual orbit. For
a repulsive interaction, the polar angleJr = J will change
in the intervalJr Î [J-¥ ,-J-¥℄ while for an attractive in-
teraction Ja = p - J and its domain of variation isJa Î [p - J-¥ , 2p - J-¥℄ as indicated in Fig. 3.

B. INITIAL CONDITIONS AND DETERMINATION OF ORBIT

PARAMETERS

Knowing the asymptotic angleJ-¥ = p - q of the hyperbolic
trajectoryÓr ¢¢m (t) º Ór ¢¢

u (t) of the reduced massm in the v-body
frameSv determines the eccentricitye of this orbit through
the relation J-¥ = cos-1 K-1

e
O . (18)

The actual branch of the hyperbola that corresponds to the
motion is the one concave towards the focusF1 at the originO if the interaction is attractive, otherwise it is the one concave
to the other focusF2, situated along the axisÓe ¢¢

x at a distance

2
 = 2a e= 2e2 s

e2 - 1
, (19)

from the hyperbolic center. Heres is the focal distance (to
the directrix) anda the semi-major axis (i.e. half the distance
between axis intercepts with the hyperbola) see Fig. 3.

Using polar coordinates{r ¢¢, J} in theSv body frame, an hy-
perbola with axisÓe ¢¢

x aligned withA-1(f) × ex and a focus at
the originO = F1 will be defined for all eccentricitiese > 1
and focal distancess > 0 by the parametric equationr ¢¢m (J) = e s

1+ e cos(g ± J) , (20)

whereg is a constant dependent of initial conditions. Us-
ing henceforthk = G mvmu for a gravitational interaction, ork = ÄÄÄÄÄÄ q1q2

4p eo

ÄÄÄÄÄÄ for a Coulombian interaction, the time equation can
also be expressed as a parametric function ofJ in the form of
Kepler’s equation

t(J) = K es

e2 - 1
O3/2

2mk K2 tanh-1 C1e+1
e-1 tanI J2MG ± 1

e2 - 1
e sin(J)

1 ± e cos(J)O , (21)

where the sign choice distinguishes attractive (+) or repulsive (-) orbits.
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FIG. 2: Asymptotic directions and axis (blue) as viewed in the v-body frame. This is au-body slingshot collision wheremv » 2.6mu. Notice
the interpretation ofÓu1 - Óuo as proportional toDÓpu, the total momentum change of theu-body in the reduced-massSv frame, and also as the
symmetry axis of the trajectory in the non-inertialv-body frame. The angleq then is identified with the asymptotic anglesJ±¥ of the trajectory
in that frame.

From the eccentricityeand the initial energy in theSv frame,E ¢¢
o = 1

2 m |Óu ¢¢
o |2, it is possible to obtain the focal distancesand

the angular momentumL ¢¢
s= k Ie2 - 1M

em |Óu ¢¢
o |2 = k sin(q) tan(q)m |Óu ¢¢

o |2 ,

(22)L ¢¢2 = k2 Ie2 - 1M|Óu ¢¢
o |2 = k2 tan2(q)|Óu ¢¢

o |2 ,

and consequently (sinceL ¢¢ = m b |Óu ¢¢
o |) the impact parameter

b and the displacementa eof each focus from the origin.

b= k| tan(q)|m |Óu ¢¢
o |2 = km |Uo|22 1

cos(q)2 - 1 ,

(23)

a e= ekm |Óu ¢¢
o |2 = k sec(q)m | ÓUo|2 .

III. THE SLINGSHOT MANOEUVRE

In Fig. 2 we have an example of a collision where the lighter
body gains kinetic energy as seen from the laboratory frame.
This is a near-maximum slingshot collision foru-body with
massmu » 0.3mv for given initial asymptotic conditions. This
is assuming unrestricted periapsis conditions, i.e. pointparti-
cle collision. In real collisions not allq angles are accessible
in the vicinity of 1

2yo for the outgoingu-body because that
would imply a periapsis distance smaller than allowed by the
dimensions of the bodies for an elastic collision.

The slingshot manoeuvres are particular cases of the possible
outcomes for either an attracting or repelling collision. It is
possible to realize them in all collisions with arbitrary mass
ratios, even though it only provides significant boosts in cases
where a small inertial mass collides with a much larger one
moving much faster. The nature of the interaction is irrele-
vant, as long as it is central and conservative. Evidently we
are not considering for the moment variations of the manoeu-
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FIG. 3: Orbital detail of the attracting and repelling open Keplerian
or Coulombian orbits viewed in thev-body frameSv. TheÓe ¢¢

x axis is
chosen to coincide with the reduced mass total change-of-momentumDÓp ¢¢m in the collision. The asymptotic angleq is the same as the one
identified in figs 1 and 2.

vre such as aero-gravity assisted slingshots18 where at perigee
the forces involved are neither conservative nor central. The
particular value ofq that corresponds to the theoretical max-
imum slingshot case is whenq equals half the angleyo be-
tweenÓvo - Óuo and

Ó
Vcm, which means thatÓu1 and Óv1 would

both come out collinear to the CM velocity
Ó
Vcm. This can be

shown as follows. From one of the orthogonality conditions
in equations (5) written asüÓu1 - Óuoü2 = Ó

d × IÓu1 - ÓuoM , (24)

with Ó
d = 2 J ÓVcm - ÓuoN = 2mv

mv + mu
IÓvo - ÓuoM , (25)

one gets after expanding on both sides,

u1
2 - 2Óu1 × Óuo + u2

o = 2
Ó
Vcm × IÓu1 - ÓuoM - 2Óu1 × Óuo + 2u2

o . (26)

therefore

u1
2 = u2

o + 2VcmüÓu1 - Óuoü cos(y) , (27)

wherey is the angle fromÓu1 - Óuo to
Ó
Vcm. But from the first

equation (2)üÓu1 - Óuoü = 2mv

mv + mu
üÓvo - Óuoü cos(q) , (28)

whereq is the angle fromÓvo - Óuo to Óu1 - Óuo. Then, if yo

denotes the angle fromÓvo - Óuo to
Ó
Vcm, the relationy = yo - q (29)

holds foryo Î [-p, p℄ andq Î A- p
2 , p

2E. Then the magnitude
of Óu1 depends solely onq andyo through the relations (27) to
(29)

u2
1 = u2

o + 4mv

mv + mu
VcmüÓvo - Óuoü cos(yo - q) cos(q) . (30)

From (30) we conclude that the range ofq that provides for a
u-body velocity boost or slingshot (corresponding tou2

1-u2
o >

0) is bounded by boost-break angleqbb = - tan-1 C cot(yo)G , (31)

which is defined through the boost condition

cos(yo - q) cos(q) > 0 . (32)

This means thatmu-boosts will happen forq Î [ - p
2 , qbb [

if yo < 0 (and forq Î ℄ qbb , p
2 ℄ if yo > 0).In each case, the

remainder of theq-domain will correspond to a breakage of
theu-body and a boost to thev-body velocity. From the defi-
nition of qbb we conclude that foryo = ± 0 all collision results
aremu-velocity boosts (for instance whenmu < mv these are
“head-on” collision with opposing velocities|Óuo| < |Óvo| and
arbitrary impact parameter), while foryo = ±p all scenarios
correspond to amu-velocity break (whenmu < mv this is a col-
lision wheremu “catches-up”mv with parallel velocities and
arbitrary impact parameter). Not surprisingly, whenÓvo - Óuo

is perpendicular to
Ó
Vcm we have equalq domains for getting a

boost or a breakage.

The condition (32) above also means that cos(y) > 0, that
is, in any slingshot situation we find that the angley fromÓu1 - Óuo to

Ó
Vcm must verify |y| < p

2 . SinceDÓpu = mu (Óu1 -Óuo), besides representing the total impulse acting on theu-
body during the maneuver, is also the direction of the force
acting on it at the periapsis, the slingshot condition can now
be phrased as follows: if at the point of closest encounter the
force acting on theu-body has a positive component in the
direction of the CM velocity, then there will be a boost in
the finalu-body velocity. Otherwise we will obtain au-body
velocity break. Notice that this formulation is valid for both
gravity assisted and coulombian slingshots, i.e. attractive as
well as repulsive interactions.

The angleyo can be obtained from initial conditions in terms
of the Óvo to Óuo anglebo (see Fig. 5), in which case we can
expressqbb byqbb = tan-1 C (1- h) 
o cos(bo) + h 
2

o - 1(1+ h) 
o sin(bo) G , (33)

whereh = mu
mv

and
o = uo
vo

. Notice that whenh = 1 and
o = 1
thenyo = p

2 for all bo, andqbb = 0, which means that in every
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collision we have equalq domains for boosting or breaking.
For the more common planet-satellite caseh » 0 and Eqn.
(33) reduces toqbb = tan-1 Ccot(bo) - csc(bo)
o

G . (34)

The following figures depict three typical situations in gravity
assisted manoeuvres. These were derived from the equations
deduced so far for the binary collisions and using diagrams
such as those in Figure (2). A live Java applet that models
these collisions with a variety of mass ratios and zooming
scales can be found in [3]. The first two figures correspond
to slingshot boosts of the lighter bodymu, while the last one
corresponds to a breaking manoeuvre ofmu. Figure 4-(a) rep-
resents a slingshot boost for bodies with similar velocities.
Figure 4-(b) is a “catch-up” collision where the heavier, faster
body boosts the lighter body velocity as it passes by it. Fig-
ure 4-(c) is a breaking collision for similar velocity bodies.
Besides the asymptotic velocities they show the actual trajec-
tories near the periapsis. The color coded points represent
same-time position in both orbits. Adjacent point intervals do
not correspond to equal time intervals but rather equal angular
displacements in the reduced-mass frame orbital representa-
tion. The zero index point corresponds to the periapsis. As
can be seen from these examples the usual rule-of-thumb for
boost or break according to wether the lighter mass passes be-
hind or in front of the heavier one can be very tricky to apply
when the mass ratio is not too big. Our proposed formulation
above in this section is however rigorous and unambiguous.

A. SLINGSHOT MAXIMA

For ideal point masses the unconstrained extremes are found
as usual throughd Iu2

1M = ¶y u2
1dy + ¶q u2

1dq = I¶q u2
1 - ¶y u2

1M dq = 0 ,
(35)

meaning

sin(y) cos(q) - cos(y) sin(q) = sin(y - q) = 0 . (36)

This holds ify - q = np for integern, but physically only
n = 0 andn = 1 are of interest. There are thus two extremes.
The second variation ofu2

1 defines their type depending on
whetherd2(u2

1) ≷ 0. Butd2 Iu2
1M = d sin(y - q) = -2 cos(y - q)dq , (37)

so y - q = 0 corresponds to a maximum whiley - q = p
corresponds to a minimum.

Thus the maximum slingshot boost for given incoming initial
conditions will happen whenÓu1 - Óuo µ DÓp2 makes an equal
angley = q with both

Ó
Vcm andÓvo- Óuo. According to (29) this

is qmax = 1
2
yo = 1

2
cos-1

æççççè Ó
Vcm × ÓUo

VcmUo

ö÷÷÷÷ø . (38)

But this then means that the outgoing asymptotic directionÓu1- Óv1 coincides with
Ó
Vcm. Denoting these slingshot extremes

by Óusl
1 andÓvsl

1 then there is a scalarl such thatÓuslmax
1 - Óvslmin

1 = l Ó
Vcm . (39)

Since in generalüÓu1 - Óv1ü = üÓuo - Óvoü, the previous equation
yields l = üÓuo - Óvoüü ÓVcmü . (40)

From the definition of
Ó
Vcm the following holds also in generalÓu1 - Óv1 = mv + mu

mv
JÓu1 - Ó

VcmN , (41)

so in conjunction with (40)üÓuo - Óvoüü ÓVcmü Ó
Vcm = mv + mu

mv
KÓuslmax

1 - Ó
VcmO , (42)

and finally the maximum slingshot velocity isÓuslmax
1 = æççççè1+ mv

mv + mu

üÓuo - Óvoüü ÓVcmü ö÷÷÷÷ø Ó
Vcm . (43)

Corresponding to this maximum, the velocityÓvslmin
1 = Óuslmax

1 - l Ó
Vcm will be the minimum of possibleÓv1: Óvslmin

1 = æççççè1- mu

mv + mu

üÓuo - Óvoüü ÓVcmü ö÷÷÷÷ø Ó
Vcm . (44)

On the other hand wheny = q + p then
Ó
Vcm points in the

opposite direction ofÓu1 - Óv1, so insteadÓvslmax
1 - Óuslmin

1 = l Ó
Vcm , (45)

and then Óvslmax
1 = æççççè1+ mu

mv + mu

üÓuo - Óvoüü ÓVcmü ö÷÷÷÷ø Ó
Vcm , (46)Óuslmin

1 = æççççè1- mv

mv + mu

üÓuo - Óvoüü ÓVcmü ö÷÷÷÷ø Ó
Vcm . (47)

IV. THE CONSTRAINED SLINGSHOT

The preceding calculations are however only valid when the
periapsis distance of the hyperbolic orbit can be taken as small
as necessary, a situation that does not apply in most physical
applications. In fact, usually the intervening bodies havedi-
mensions which prevents an elastic collision to occur if the
periapsis distancerp is smaller than a limiting valuerp < rmin.
This can be for instance the radius of a planetary mass or
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FIG. 4: Orbital detail of trajectories for: (a) an attractive interaction near a maximum slingshot of au-body (black) of massmu colliding
elastically with a massmv » 3mu. (b) attractive slingshot of au-body (black) of massmu in a “catch-up” collision with a massmv » 2mu.
(c) breaking maneuver foru-body of massmu » 1

5mv. Color coded dots represent simultaneous (same color) positions in the trajectory, in
equally-spacedq-intervals. The closest approach corresponds to label 0.

star, plus an arbitrary offset to prevent friction from eventual
atmospheres or stellar corona. Thus a different maximiza-
tion must be performed which embodies this constraint when
calculating the maximum kinetic energy boost per unit massDku = 1

2(u2
1 - u2

o) that can be achieved for orbits that do not
exceed the limit of maximum approach given by a specificrmin.

We will first do this calculation in the limiting case of
Ó
Vcm »Óvo which is typical for gravity assist flyby of a small satellite

about a planetary mass, i.e. whenmu � mv.
Recall that for an hyperbolic orbit the periapsis distance is ther-value parametrized byJ = 0, that isrp = e s

1+ e
. (48)

The semi-major axisa and the focal distances

a = e s

e2 - 1
, s= L ¢¢k m e

, (49)

can be used to express the kinetic energyE ¢¢ = 1
2 mU2

o = k/2a
andrp = (e- 1) a from which follow the identities

e= 1+ rp

a
, a = k

2E ¢¢ , (50)

where we recallk = G mvmu. For an attractive orbit
cos(J-¥) = -1/ereally means cos(q) = 1/e(sinceJ-¥ = p-q)
that is

cos(q) = 1

1+ rp

a

= 1

1+ mU2
ok /rp

. (51)

Now, since
Ó
Vcm » Óvo we obtain the following identities relat-

ing initial velocities (see Fig. 5 ):; Uo sin(yo) = uo sin(bo) ,
Uo cos(yo) = vo - uo cos(bo) .

(52)

wherebo denotes the incidence angle ofÓuo relative to the
directionÓvo andyo is the angle between the directionsÓvo and
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FIG. 5: Angular relations in the casesmv � mu,
Ó
Vcm » Óvo (left) and in general (right). Recall thatyo = y + q in both cases, butyo = a on the

left, whileyo = a + (yo - a) on the right.Ó
Uo = Óuo- Óvo. We can use (52) to eliminateUo = üÓvo- Óuoü andyo from Eqn. (30) and express the change in kinetic energy
per unit mass of the satellite in the laboratory (heliocentric)
frame asDku = 2mVcm vo

mu
cos(q)2 B1- uo

vo
J cos(bo) - sin(bo) tan(q)NF . (53)

Using Eqn. (51) to eliminateq from Eqn. (53) we can express
the gain in kinetic energy per unit mass of the satellite in terms
of the approach anglebo and the velocity ratio
o = uo/vo.

Dku = 2m v2
o

mu

éêêêêêêêêêêêêêêêêêêêêêêë1- 
o

æçççççècos(bo) - sin(bo)2J1+ m v2
ok /rp
I
2

o - 2 cos(bo) 
o + 1MN2 - 1
ö÷÷÷÷÷øJ1+ m v2

ok /rp
I
2

o - 2 cos(bo) 
o + 1MN2 ùúúúúúúúúúúúúúúúúúúúúúúû . (54)

Notice that in (54) under the assumed conditionsm/mu » 1
andk/rp m » G mv/rp is the potential energy per unit mass at
the periapsis distance of the planet.

Now we will derive the general relation for the energy gain per
unit mass in situations where the momenta of the bodies are
of similar order in magnitude, in which case

Ó
Vcm is no longer

collinear withÓvo. In this case the angular relations presented
in Fig. 5 indicate that the convenient decomposition fory isy = yo - q = a + (yo - a) - q , (55)

where(yo-a) is the angle between
Ó
Vcm andÓvo. Furthermore,

using the definition of
Ó
Vcm, the projection

Ó
Vcm × Óvo can be

expressed as a function ofbo and the ratio
o = uo/vo

Vcmvo cos(yo - a) = m v2
o K 1

mu
+ 1

mv

o cos(bo)O , (56)

and also we can get fromÓvo ´ Ó
Vcm that

Vcmvo sin(yo - a) = m
mv

v2
o 
o sin(bo) . (57)

Now we should write (see Figure 5)ìïïïíïïïî Uo sin(a) = uo sin(bo) ,
Uo cos(a) = vo - uo cos(bo) ,
U2

o = v2
o I
2

o - 2 cos(bo) 
o + 1M .
(58)

Substitution of Eqns. (55) to (58) and (51) into formula (30)
gives for equal massesmv = mu = mDku = 2m2v2

o

m2

éêêêêêêêêêêêêêêë1- 
2
o + 2
o sin(bo)2K1+ m v2

ok /rp
(
2

o-2
o cos(bo)+1)O2-1J1+ m v2
ok /rp
I
2

o - 2
o cos(bo) + 1MN2 ùúúúúúúúúúúúúúúû .

(59)
and in the general case



10

Dku = 2m2v2
o

m2
u

éêêêêêêêêêêêêêêêêëmu

mv

1- 
2
o + 2
o sin(bo)2K1+ mv2

ok/rp
(
2

o-2
o cos(bo)+1)O2-1K1+ mv2
ok�rp
I
2

o - 2
o cos(bo) + 1MO2 +Imv - muM
mv

1- 
o Kcos(bo) - sin(bo)2K1+ mv2
ok/rp
(
2

o-2
o cos(bo)+1)O2-1OK1+ mv2
ok�rp
I
2

o - 2
o cos(bo) + 1MO2

ùúúúúúúúúúúúúúúúúû . (60)

Notice that in these last formulas we have assumed that the
periapsis distance is fixed atrp. What this distance is depends
entirely on the particular nature of the collision type. Fora
slingshot problem of a small satellite about a planetrp might
be a small multiple of the planet radius, but for a binary star
collision it should probably be greater than the Roche limitto
avoid the inelastic effects of the gravitational tides between
massive extended bodies.

Formulas (54), (59) and (60) are generalizations to arbitrary
masses and orbital conditions of the known energy change ex-
pressions for gravitational slingshot such as those found in
Broucke’s paper1.

V. APPLICATION TO GRAVITY-ASSIST MANOEUVRES

In the particular case of spacecraft manoeuvres assisted bythe
gravitational field of a planetary object we can assume that
mv � mu in the formulas above, therefore to a high accuracym
mu

» 1 and mk » 1
G mv

. When approaching a large planetary

massM = mv from an anglebo (measured fromÓvo to Óuo, see
Fig. 5), a satellite of massm= mu cannot engage the collision
with an arbitrary periapsis distancerp and has to maintain a
minimum distance larger than a multiple of the planet’s ra-
dius R. Thus the extreme limiting periapsis distance will be
assumed as the planetary radius,rp ³ R. From the expression
for the inverse eccentricity1e = cos(q) we obtain a limitation
on the available orbits by specifying that possible collision
outcomes must respect the relation

cos(q) <
1

1+ R
G MüÓuo - Óvoü2 , (61)

or, in terms of the ratio
o = uo
vo

of satellite to planetary speeds

cos(q) <
1

1+ R v2
o

G M I1- 2 cosIboM 
o + 
2
o M . (62)

This relation limits the maximum velocity outcome at the
slingshot through Eqn. 53, otherwise it could theoretically
be

u
slmax
1 = vo K1+1

1- 2 cosIboM 
o + 
2
o O (63)

if there were no limitations on the periapsis distance allowed.
In terms of relative kinetic energy gain per unit mass we can
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FIG. 6: Boost scenario for a collision with a mas-
sive tiny object for whichRv2o

GM � 1.

express this for the theoretical case of an encounter with a
massive object with very small radius as

2Dku

v2
o

= K1+1
1- 2 cosIboM 
o + 
2

o O 2 - 
2
o , (64)

for which we can expect the general boost pattern as in Figure
6. For solar system planets however the situation is not as
favorable, and we get instead the scenarios shown in Figure 7
below. Notice that in both cases the conditions for a breaking
manoeuvre are much more limited than those for the boost.
For other planets the scenarios are similar to these two cases.
These manoeuvres are purely gravitational and do not include
the effects of powered boosts at periapsis to modify orbital
parameters and thus achieve a different orbit, or aerogravity-
assisted manoeuvres to alter the bending angle and yield larger
boosts.19
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VI. CONCLUSIONS

We have shown that the slingshot effect is no stranger than any
other elastic collision, just a particular case of the general set
of possible outcomes where the timing of arrival at the point
of closest approach is more favorable to a boost in the veloc-
ity of the lighter mass. In the case of point particles, equation
(43) indicates that the optimal policy is a quasi-head-on for
attractive interactions, and a head-on collision for repelling
interactions. However, for extended bodies there is a mini-
mum distancermin of approach beyond which there is a severe
departure from elasticity (e.g. crash and burn), thereforethe
approach angleq for Óuo - Óvo must provide for sufficient ec-
centricity e such that(a - 1) e > rmin for attractive ones, or(a+ 1) e > rmin for repulsive interactions.

In the gravitational case, the Hohmann transfer orbits20 may
be the more energetically efficient but they are not necessarily
the optimum policies for approaching a slingshot configura-
tion. Still in this case there is often the question of whether
there could be a solar slingshot manoeuvre. The answer is
obviously affirmative. In fact, just like any other elastic bi-
nary collision, a slingshot around the Sun is a possibility when
viewed from a frame where the Sun itself is moving. Also
obvious is nonetheless the fact that, just as in the case of
the Jupiter gravity-assist fly-by where there is no gain in the
satellite velocity when viewed from the planetary frame, any
slingshot manoeuvre involving the sun would appear to return
a disappointingly unaltered final speed in the solar reference
frame, but this need not be the view from another frame. How-
ever it is true that for most velocitiesÓu¢

o we are able to throw

spacecraft with towards the Sun, as seen from that external
frame where the Sun itself is moving with velocityÓvo » Ó

Vcm
the spacecraft velocity would beÓuo = Óu¢

o + Ó
Vcm (65)

and thus the boost term in (43) would be

mv

mv + mu

üÓuo - Óvoüü ÓVcmü » üÓu¢
oüü ÓVcmü . (66)

So unlessüÓu¢
oü is already much greater than the speed of the

solar system itself, this will in general be a small factor and
the resulting speed of the spacecraft is about the same as that
of the Sun itself. There is also the question of producing a
positive energy orbit for a spacecraft that is already within the
sphere of influence of the Sun without which the incoming
orbit would not be truly hyperbolic.

Note that angular momentum has no role in these calculations,
other than being a globally conserved constant that defines the
plane where the collision takes place and defines the relation
between the impact parameterb and the parameterq. So it
is surprising to see that many so-called didactic explanations
of the effect still mention ‘stealing angular momentum’ to ac-
count for the increase in velocity of a spacecraft in a gravity
assisted fly-by. It should also be stressed that, although inthe
specific case of planetary fly-by the calculation of actual or-
bits involve a complexN-body problem, there is no aspect of
the slingshot effect above that involve more than two-body in-
teractions. In particular no three-body effects are neededto
understand the slingshot of spacecraft in the vicinity of plan-
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etary masses21, although the calculations for intermediate tra-
jectories and timings for launch and arrival at the planet vicin-
ity should include this for added accuracy. Tisserand’s cri-
teria and three-body graphical methods have been proposed
for these high-precision calculations22, but the fact remains
that the slingshot effect involves basically the mechanicsof
an elastic binary collision.

Having said this, mention should also be made to the limi-
tations on the presented model for the calculations of an ac-
tual planetary fly-by. The provisos made in [2] concerning the
asymptotic nature of the collision process must be pondered
with actual data: the times involved in the approach and ex-
traction of a spacecraft from the fly-by should be compared

to the duration of the fly-by before they can be considered as
asymptotically infinite. For the duration of the fly-by, the ex-
ternal forces must be negligible as compared to the collisional
interaction to introduce only minor perturbations in the result-
ing trajectories, since it takes too long to disregard the fact
that both the planet and the spacecraft are orbiting the Sun.
Thirdly, the entry in the planet’s ‘sphere of influence’ (which
is often considered to be the Hill’s sphere) depends on the ap-
proach that is made, and that should also be factored in the
calculations. Still, as long as these factors can be shown toin-
troduce small perturbations to the simplified binary collision
model, this can be used to successfully explain the physics of
the effect.* Electronic address: amaro@fisica.ist.utl.ptÖ Electronic address: lemos@fisica.ist.utl.pt
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