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Three-body problem periodic orbits with vanishing angular momentum
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Periodic solutions of the general three-body problem are investigated in the shape space. Two different solutions are
considered: the first is an extension of the well-known figure-eight orbit, and the second one is from the free-fall problem.
Using the shape space, we reduce the dimension of the problem. These orbits are obtained numerically and described on
the Euclidean plane and on the shape sphere.
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1 Introduction

The general solution of the three-body problem is unknown.
In fact, we have the Sundman solution that is very important
for theoretical aspects, but it turns out to be useless in prac-
tice. Moreover, the angular momentum has to be nonzero in
the Sundman solution. Special solutions of the three-body
problem (without any restriction to masses) were discov-
ered by Euler in 1765 and by Lagrange in 1772. In these
solutions, all three bodies move along the Kepler trajecto-
ries while they are located on a straight line (the rectilinear
Euler configuration) or at the vertices of an equilateral trian-
gle (the Lagrange equilateral triangle). But when the angu-
lar momentum is equal to zero, the motion is homographic
and terminates in a collision of the triple.

Early in the 20th century (Burrau 1913), the general
three-body problem had been integrated and formulated as
the so called Pythagorean problem. Here, three bodies are
initially located at vertices of the Pythagorean triangle, have
masses of 3, 4, and 5 units with opposite sides of the corre-
sponding length, and all three bodies have zero initial veloc-
ities. In the 50’s, using a regularization procedure (Schubart
1956), Schubart had found the periodic trajectories of the re-
stricted three-body problem where two equal masses move
along a line. In the 70’s, some types of orbits for the general
three-body problem were investigated numerically by Sze-
behely & Peters (1967), for the Pythagorean problem by
Broucke & Lass (1973) and Broucke & Boggs (1975), and
for periodic orbits by Henon (1976) and others.

The next strictly proved special solution was found more
than two hundreds years after the appearing of the Lagrange
equilateral orbits. This is the remarkable figure-eight trajec-
tory by Chenciner & Montgomery (2000). Firstly, this orbit
was found numerically by Moore (1993). Then in Chenciner
& Montgomery (2000), it had been reopened, and the ex-
istence of the figure-eight form was proved using a varia-
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tional method with symmetry constraints. In Barutello, Fer-
rario & Terracini (2004), it was shown that all finite symme-
try groups of the Lagrangian action functional in the planar
three-body problem include only ten items at all.

The dihedral group D6 yields the figure-eight orbit that
is called the simple choreography. Here, three equal masses
move along the same closed curve lagged in phase from
each other by one third of the period, T/3. Rather interest-
ing and unexpected, the figure-eight orbit has zero angular
momentum and is stable.

We consider the trajectories with zero angular momen-
tum and these orbits as planar. Assuming that the barycen-
ter is fixed at the origin of the coordinate system, we re-
duce the dimension of the configuration space down to 4.
Lemaitre (1955) had reduced this dimension to 3 consid-
ering coordinates in space to be known as the shape one.
Later in the 90’s, a special geometric reduction was consid-
ered by Hsiang & Straume (1994) and Montgomery (1996).
This is the “shape sphere”, the sphere in the shape space,
that Chenciner & Montgomery have used in their proof.
In Moeckel & Montgomery (2013), the reduction, regular-
ization, and blow-up of the planar three-body problem are
described.

Following the paper by Chenciner & Montgomery
(2000) a large number of works were devoted to using
the variational method and searching special solutions of
the n-body problem. A number of trajectories with vanish-
ing angular momentum was found in Shuvakov & Dmi-
trasinovic (2013); for example, trajectories of symmetric
periodic orbits for the three-body problem may be found
in Titov (2006).

In this paper two different classes of orbits are consid-
ered: the split eight orbit and the free fall one. These orbits
are essentially different; however, both orbits have zero an-
gular momentum and, moreover, both types are described
in the reduced space (the shape one) and on the Euclidean
plane. This approach gives us the opportunity to make some

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



272 V. Titov: Three-body problem periodic orbits

conclusions about the properties of the obtained orbits and
to reduce the space of the initial conditions to find the free-
fall solutions.

2 Shape sphere

We can reduce the configuration space Q of our problem
considering all trajectories which coincide into one by being
translated or rotated. To reduce the space Q by translation,
we can use the Jacobi coordinates

ξ1 = r2 − r1,

ξ2 = r3 − m1r1 + m2r2

m1 + m2
= r3

m1 + m2 + m3

m1 + m2
,

and then use the mutual distances and the inertia moment

r12 = |ξ1|,
r13 = |ξ2 +

m2

m1 + m2
ξ1|,

r23 = |ξ2 −
m1

m1 + m2
ξ1|,

I = r2 = μ1|ξ1|2 + μ2|ξ2|2.
Here, μ1 = m1m2

m1+m2

, μ2 = m3(m1+m2)
m1+m2+m3

. Now the configura-
tion space has dimension 4. We get the same result by fixing
the center of the masses at the origin r1 + r2 + r3 = 0.

The next step. Let us reduce our space by rotation using
the Hopf mapping. Let ξ1, ξ2 be the complex points, then

w1 =
1

2
μ1|ξ1|2 −

1

2
μ2|ξ2|2,

w2 + iw3 =
√

μ1μ2 ξ1ξ̄2,

w2
1 + w2

2 + w2
3 =

1

4
I2 =

1

4
r4.

The space of (w1, w2, w3) is called the shape space and
represents the space of the congruent triangles; here, S =
2w/I , (s1, s2, s3) is the shape sphere and it represents the
space of the similar triangles.

The equator s3 = 0 is the set of the degenerated trian-
gles. On the equator, there are three Euler points and three
binary collision points. All these ones lie on meridians of
the isosceles triangles.

The relations between the si and triangle sides are the
following:

r2

12

r2 = m1+m2

2m1m2

(1 + s1),

r2

13

r2 = m1+m3

2m1m3

+
m2m3−m1(m1+m2+m3)

2m1m3(m1+m2)
s1+ m2

√
m1+m2+m3

(m1+m2)
√

m1m2m3

s2,

r2

23

r2 = m2+m3

2m2m3

+
m1m3−m2(m1+m2+m3)

2m2m3(m1+m2) s1− m1

√
m1+m2+m3

(m1+m2)
√

m1m2m3

s2.

The third component s3 can be obtained as follows:

s3 = ±
√

1− s2
1 − s2

2 .

Following Lemaitre (1955), we can introduce the polar
coordinates ϕ, θ and write

r2
ij = r2(1− cos θ cos(ϕ− ϕk)),

where ϕk is the longitude of the k-th Euler point; i, j, and
k are permutation of the numbers 1, 2, and 3.

If the angular momentum vector is zero, we have two
remarkable properties of trajectories (Chenciner & Mont-
gomery 2000; Montgomery 2002):

– We can restore the real trajectory (up to rotation) if we
have this trajectory on the shape sphere.

– Coordinates of the third component s3 are monotonic
functions between its two local extrema that lie on the
opposite hemispheres.

Due to the scale symmetry, we can fix the period T = 2π
if desired. If x(t) is a solution of the n-body problem, then
λx(λ−3/2t) is the solution as well.

3 Split eight

We search each trajectory as an extremal of the action func-
tional

A(q(t)) =

t2∫

t1

L(r, ṙ) dt ,

where L is the Lagrangian of the problem L = K + U ,

K =
1

2
(m1|ṙ1|2 + m2|ṙ2|2 + m3|ṙ3|2),

U =
m1m2

r12
+

m1m3

r13
+

m2m3

r23
.

We minimize the action functionalA in the space of the
2π-periodic function. So, we search the solution in the form

xj(t) =
∑
i=1

Cj
xi cos it + Sj

xi sin it,

yj(t) =
∑
i=1

Cj
yi

cos it + Sj
yi

sin it,

where j is the body number. We consider the inertial space;
so, we can search the functions xj , yj for two bodies only.

Thus, we have the following nonlinear programming
problem:

min A(Cj
xi, C

j
yi

, Cj
xi, C

j
y i

), i = 1, . . . , n, j = 1, 2,

gk(Cj
xi, C

j
yi

, Cj
xi, C

j
yi

) = 0, k = 1, . . . , m,

gl(C
j
xi, C

j
yi

, Cj
xi, C

j
yi

) ≤ 0, l = m + 1, . . . , l.

Additionally, we have the extra relations gk if we search for
a solution with some symmetry.

Methods of the nonlinear programming guarantee of
finding the solution if the action functional A and the con-
straints gi are convex functions. For the n-body problem,
it is not the case. However, these methods often work in
the non-convex cases. To determine the coefficients, we use
the following two nonlinear optimization systems: LOQO by
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Fig. 1 Figure-eight trajectory on the shape sphere (left), black
ball is in the initial configuration, the Euler points: Ei, the collision
points: Ci; and on the Euclidean plane (right), three points are in
the initial configuration.

Vanderbei (2007) and KNITRO by Byrd, Nocedal & Waltz
(2006). Both systems give similar results.

For the figure-eight trajectory, we have a simple chore-
ography and symmetry around the x- and y-axis.

x(t) =

N∑
i=1
i�=3k

C2i−1 cos (2i− 1) t + S2i−1 sin (2i− 1) t,

y(t) =
N∑

i=1
i�=3k

C2i cos 2i t + S2i sin 2i t,

xj(t) = x (t + 2π(j − 1)/3) ,

yj(t) = y (t + 2π(j − 1)/3) , j = 1, 2, 3.

The 2(N − N/3) coefficients for the expansions are trun-
cated to N harmonics. If we limit N by 24, the amplitude
of the neglected coefficients is less than 5×10−7.

In Fig. 1, the next series are used (up to 10−3):

x = 0.548 cos(t) + 0.949 sin(t)− 0.013 cos(5t)

+ 0.022 sin(5t) + 0.003 cos(7t) + 0.005 sin(7t),

y = 0.292 cos(2t) + 0.169 sin(2t) + 0.048 cos(4t)

− 0.028 sin(4t) + 0.003 cos(8t) + 0.002 sin(8t)

+ 0.001 cos(10t).

In the left side of Fig. 1, the eight-trajectory is drawn on the
shape sphere. The black ball at the left of the north hemi-
sphere is a point corresponding to the initial configuration of
these three bodies (the isosceles triangle). At the right side,
the figure-eight trajectory is shown on Euclidean plane. The
Euler points are E1, E2, E3, and the collision points are C1,
C2, C3.

Make the symmetry weaker. Now the trajectory is not
the simple choreography, and each body moves on its own
trajectory. If one supposes m1 = m2, the trajectories have

E1

E2

E3

C1

C2

C3

L4

L5

Fig. 2 Split figure-eight trajectory on shape sphere (left), black
ball is in the initial configuration, and on the Euclidean plane, three
points in the initial configuration, the body of mass 0.97 moves
along the dashed curve, bodies of mass 1 move along the symmet-
ric solid line.
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Fig. 3 Split figure-eight trajectory on the shape sphere (left),
black ball is in the initial configuration close to the Lagrange point
L4; on the Euclidean plane, three points are in the initial configura-
tion, the body of mass 0.87 moves along the dashed curve, bodies
of mass 1 move along the symmetric solid line.

the form

x1(t) =
N∑

i=1

C2i−1 cos (2i− 1) t + S2i−1 sin (2i− 1) t,

y1(t) = b0 +
N∑

i=1

C2i cos 2it + S2i sin 2it,

x2(t) =
N∑

i=1

C2i−1 cos (2i− 1) t− S2i−1 sin (2i− 1) t,

y2(t) = −b0 −
N∑

i=1

C2i cos 2i t + S2i sin 2i t,

x3(t) = −(
m1x1(t) + m2x2(t)

)
/m3,

y3(t) = −(
m1y1(t) + m2y2(t)

)
/m3.

We have to determine 2N + 1 coefficients.
For m1 = m2 = 1, m3 = 0.97, we obtain

x1 = 0.526 cos(t) + 0.883 sin(t) + 0.006 cos(3t)
−0.060 sin(3t) − 0.022 cos(5t) + 0.014 sin(5t)
+0.008 cos(7t) + 0.003 sin(7t) − 0.004 sin(9t)
−0.001 cos(11t)− 0.001 sin(11t) + 0.001 sin(13t),

y1 = 0.311
+0.213 cos(2t) + 0.206 sin(2t) + 0.031 cos(4t)
−0.043 sin(4t) − 0.017 cos(6t) + 0.001 sin(6t)
+0.004 cos(8t) + 0.005 sin(8t) − 0.001 cos(10t)
−0.002 sin(10t)− 0.001 cos(12t).
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In Fig. 2, the split eight-trajectory with m1 : m2 : m3 = 1 :
1 : 0.97 is shown on the shape sphere and on the Euclidean
plane. On the Euclidean plane, the body of mass 0.97 moves
along the dashed curve, two other masses move along the
two symmetric solid curves.

Let us change the ratio of the bodies’ masses. Now, m1 :
m2 : m3 = 1 : 1 : 0.87.

x1 = 0.444 cos(t) + 0.720 sin(t) + 0.018 cos(3t)
−0.092 sin(3t) − 0.032 cos(5t) + 0.014 sin(5t)
+0.014 cos(7t) + 0.008 sin(7t) − 0.001 cos(9t)
−0.008 sin(9t) − 0.003 cos(11t) + 0.003 sin(11t)
+0.002 cos(13t) + 0.001 sin(13t)− 0.001 sin(15t)
−0.001 cos(17t) + 0.001 sin(17t) + 0.001 cos(19t),

y1 = 0.612
+0.139 cos(2t) + 0.225 sin(2t) + 0.033 cos(4t)
−0.054 sin(4t) − 0.026 cos(6t) + 0.007 cos(8t)
+0.010 sin(8t) + 0.002 cos(10t)− 0.006 sin(10t)
−0.003 cos(12t) + 0.001 sin(12t) + 0.002 cos(14t)
+0.001 sin(14t)− 0.001 sin(16t)− 0.001 cos(18t).

This trajectory is shown in Fig. 3. On the shape sphere the
initial point is close to the north pole L4. The trajectory of
the smallest body (right) is drawn by a dashed line. The
two other bodies move along the curves that do not inter-
sect each other and lie in different semiplanes.

Two points, m1 and m2, move in different semiplanes
if the mass ratio is less then 0.96. Their trajectories do not
intersect each another. The initial configuration for the mass
ratio 0.87 is very close to the equilateral triangle. Mont-
gomery proved (see Theorem 2 and Corollary 1 in Mont-
gomery 2002) that the height function z(t) for the zero an-
gular momentum solution has exactly one critical point be-
tween any two consecutive zeros. Moreover, z = ±1 (or
θ = ±π/2) if the configuration is Lagrangian. In Fig. 3, the
trajectory on the shape sphere passes very close to L4, so,
this type trajectory does not exist for the mass ratio less than
0.86.

4 Free-fall orbits

Here, we consider the free-fall three-body problem. This is
the three-body problem with zero initial velocities; thus, the
angular momentum equals to zero as well.

The first research on the free-fall three-body problem is
dated back to researches by Meissel and Burrau who stud-
ied the Pythagorean problem: Three points with masses 3,
4, and 5 are located at vertices of the Pythagorean triangle
and have zero initial velocity. Meissel expected that these
initial condition would yield a periodic orbit, but he did not
succeed. Burrau picked up the integration method and pub-
lished results in 1913. More than fifty years later, Szebehely
& Peters (1967) integrated the problem much further. And
after a series of close encounters, the points go to infinity,
although at some intermediate instant the configuration of
points and velocity are close to the initial one. Slightly vary-
ing sides, Standish (1970) found periodic orbits close to the
Pythagorean one.

Fig. 4 Hill surface for the three body problem in the shape space,
m1 = m2 = m3 = 1. Horizontal lines correspond to the degener-
ated triangles, other lines correspond to the isosceles triangles; the
solid black line shows the trajectory of the free-fall solution; so, 2
boundary points (black) lie on the Hill surface.

Now consider the Hill surface U = h. Note that in 1988,
Moeckel studied the qualitative features of the three-body
problem using the Hill surface in a reduced space (Moeckel
1988). The free-fall solutions have one point on the Hill sur-
face. Suppose this happens at the instant t = 0. The problem
of n bodies is reversible: if x(t) is a solution, then x(−t) is
a solution as well. Once a periodic solution of the free-fall
three-body problem begins on the Hill surface, this solution
should reach the other point on the Hill surface in half of the
period and then come back along the same path to the ini-
tial position. Such orbits are called the Brake ones. Without
loss of generality, we can search the initial conditions for a
periodic solution on the Hill surface; and due to the scale
symmetry, we can set h = −1. Such a surface in the shape
space is shown in Fig. 4.

Here, we deal with objects of equal masses m1 = m2 =
m3 = 1. Consider their trajectories in the shape space with
coordinates r, ϕ, and θ,

x = r cosϕ cos θ,

y = r sin ϕ cos θ,

z = r sin θ,

then

r2
ij = r2[1− cos θ cos(ϕ− ϕk)].

With fixed energy h = −1, the Hill surface is described as

r(ϕ, θ) =
3∑

k=1

1√
1− cos θ cos(ϕ− ϕk)

.

We scan our Hill surface and, looking for the trajec-
tory, attain the Hill surface once more. If so, this is a pe-
riodic orbit. We can only test ϕ ∈ (0, π/3), θ ∈ (0, π/2).
The numerical integration using the Waldvogel regulariza-
tion (Waldvogel 1972) yields the periodic free-fall orbit
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Fig. 5 Free-fall three-body problem orbit on the shape sphere
(left), the black ball is in the initial configuration, m1 = m2 =

m3 = 1, h = −1; the initial point and point (dark gray) in T/2
lie on the Hill surface.

with

ϕ0 = 0.070800, θ0 = 0.739568,

x1 = 0.4842574 x2 = 0.4842574 x3 = −0.9685148,

y1 = 2.1991441 y2 = −2.1240441 y3 = −0.0751000.

r10
: r20

: r30
= 0.58099 : 0.624228 : 1 .

The second “conjugate” point on the Hill surface is

ϕh = −0.489050, θh = −0.421551,

r1h
: r2h

: r3h
= 2.070005 : 2.826337 : 1 .

The period is T = 20.00988, the minimal distance between
bodies rmin = 0.00136. In Fig. 4, the solution is drawn as
the thick solid curve. Black points lie on the Hill surface. All
points of the solution, except two boundary ones, lie inside
the Hill surface.

In Fig. 5, this trajectory is shown on the shape sphere
(left) and in the Euclidean plane. The black ball is the first
(initial) point on the shape sphere, the small gray circle is
the second (“conjugate”) one.

5 Conclusion

Two classes of orbits with vanishing angular momentum
are investigated. The first one is an extension of the classic
figure-eight orbit, i.e., the split figure-eight one. Cases are
considered where two masses are equal and the third one is
slightly smaller. Varying the value of the third mass, we ob-
tained symmetric periodic orbits. Starting with m1 : m2 :
m3 = 1 : 1 : 0.96, the two quasi-eights trajectories do not
intersect each other and lie in two different semiplanes.

The isosceles configuration is close to the equilateral tri-
angle, and the trajectories are close to L4. Since the height
of the trajectory is a monotonic function between two se-
quential extrema, such trajectories with mass distribution
less than m1 : m2 : m3 = 1 : 1 : 0.86 . . . do not exist.

Consideration of the three body problem in a reduced
space (the shape space) allow us to reduce the domain of
the initial condition for the free-fall problem to a two di-
mensional fragment of R2: ϕ ∈ (0, π/3), θ ∈ (0, π/2).
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