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Binary Collision Orbits and the Slingshot Effect
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We derive the equations for the gravity assist manoeuvraergeneral 2D case without the constraints of
circular planetary orbits or widely different masses asiagsi by Brouckk and obtain the slingshot conditions
and maximum energy gain for arbitrary mass ratios of twadiolg rigid bodies. Using the geometric view de-
veloped in an earlier paper by the autifdtee possible trajectories are computed for both attractivepulsive
interactions yielding a further insight on the slingshotimanics and its parametrizatforThe general slingshot
manoeuvre for arbitrary masses is explained as a particata of the possible outcomes of attractive or repul-
sive binary collisions, and the correlation between asptiptnformation and orbital parameters is obtained in
general.

I. INTRODUCTION interaction in all space and time dimensions there is niyura
a loss of information of precisely where and when are the two
. ) ] . ) bodies for given initial velocities, so a determination frioes
The slingshot or gravity assist manoeubréis often consid-  made as to what corresponds in a real problem to these times
ered as part of a restricted three-body problem and its usgnd positions. It could be claimed that these initial velesi
has been associated in the literature mostly with spaceflighshould be those of the bodies when their distance is equal to
strategie$ 1% with some applications in astrophysics for the the sum of the radii of their respective spheres of influghce
study of mass ejection from binary clustérand the proposal gy since this too is a fuzzy concept this is not much of an
of new General Relativity tests In reality, the design of improvement. In fact, that information is only present when
spacecraft trajectories between two planets is a many-bodynough conditions are specified to determine the collisign o
problem except for the slingshot part, which is in most de-come uniquely® Thus, in the 2-dimensional case, the circum-
signs well approximated by an elastic binary collision. sThi ference of possibilities for the velocity outcomes of one of
work focuses on the slingshot manoeuvre as a particular casge podies encodes the missing information about where the
of a general binary elastic collision between massive abjec pogies initially are simultaneously when they have the ive
subjected to central interaction forces. Ina previous Wt yelocities. This can also be translated into an impact param
geometric determination of binary collisions was introgdic  eter in the non-inertial body-frame for one of the masses (or
and the possible outcomes were in some cases surptisMe  reduced-mass frame) but that begs the question of viewing th
have obtained a parametrization of all possible outcomes ofg|lision in the laboratory frame. In this paper the asstampt
a binary elastic collision in an arbitrary frame, and frore th || therefore be made that &t= 0 the Center of Mass (CM)

mass ratios and initial velocities as asymptotic initiah@® il pe at the origin of the laboratory frame (LF).
tions we obtain a picture not only of the final asymptotic ve-

locities in terms of a single parametan the 2D case, butalso Diagrams like the one in FiglLl 1, introduced in a previous
the detailed description of the two-body motion that fitsthe WOrk?, are used to correlate the asymptotic information, pro-
asymptotic data in the case of the gravitational or coulambi Vided by initial velocities far away from the periapsis, hwit
interaction. We are therefore in condition to determineathi the possible eccentricities, focal distances and otheitabrb
precise orbital parameters must be chosen to obtain a desir@arameters for open Keplerian orbits in case of gravitation
effect on a flyby of a satellite about a planet or star, be it zAttractive or Coulombian repulsive scattering. Theserdiag
gravity assisted boost or capture. The conditions for airav ~ depict the relation between incoming laboratory frame gsym
assisted manoeuvre of a satellite are often loosely agedcia totic velocitiesv, andd,, of massesn, andm, respectively,

to a flyby in front or behind the planétBoth in the case of ~and their final asymptotic velociti&g andt,, through a com-
attractive as well as repulsive collision forces, a hardek| Putation involving the scattering anglef them, mass, mea-
must be performed to really grasp what the critical ingretie Sured in its initial asymptotie-body frame from the direc-

is. In particular we show how the geometry and the timing oftion of the incoming relative velocity, — T, of them, mass.
arrival at the point of closest approach (periapsis), tothét [N thatu-body frame the circumferences of possible veloc-
relative position of the bodies with respect to the normahe ity outcomes are easily drawn and their image in the labora-
Center of Mass velocity ., at that point, determines the out- 7Y frame can easily be deduced, thus yielding information
come of the collision and refine the phenomenological rile-o 2P0t the possible directions and magnitudes of asymptotic

thumb that a flyby in front of the planet results in a slowing of final velocitiesv, and, for both masses. In this way the

the satellite whilst a flyby behind the planet's trajectoryuld ~ OTPits can be viewed in the laboratory frame and a study can
result in a boost3 In fact, the asymptotic description of a col- P& made, for instance, for the optimal incidence angle on a

lision is somewhat elusive in this respect. By scaling oet th Planetary fly-by that delivers the maximum allowed velocity
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boost in a chosen direction. The energy gain is obtained both 1.

in the case of idealized point particle collisions and estsh
object collisions, where the periapsis distance is comgtca

DETERMINATION OF ORBITAL PARAMETERS

by a minimum value below which the collision is no longer The binary elastic collision diagrams such as that shown in

elastic. The relation of this asymptotic information wittet

Fig.[d provide several simultaneous views of the event, to wi

actual trajectory can also be displayed using the fact tieat t the laboratory, Center of Mass and body frames. The pos-

reduced-mass-frame trajectory axis and asymptotic dinest

sible velocity outcomes for both masses are parametrized by

are already included in these diagrams, and thus also altthe the anglef thatt, — 0, makes with the reference direction
bital parameters can be deduced or introduced here. The fin¥s — Uo, Which is also the direction of the CM velocity in the
velocities can be determined from these diagrams by specifySy, initial body frame. In this frame, when, was initially

ing the scattering angle of U, — U, relative to the inbound

at rest is the scattering angle of the masg after the colli-

directionv, — U, in the initial frame of one of the bodies (the sion with an incoming mass\,. The range of € |-, +1]
u-body S, frame in Fig.[1). This angle specifies the asymp-encompasses all possible results in a binary elastic iollis

totic direction of the scattering of thebody in theSuo frame
where it was initially at rest, the reference direction lgaite-
fined by the CM velocity/ o, — Uy = i (Vo — Uo) in that
frame. Denoting byi, the direction defined by, — U,, and

W, its orthogonal direction in the plane of the collision, we
deduce from the momentum and kinetic energy conservatiof

laws tha#

[0y = Gl = 7 (Vo = Uo) - Uy,
m, +m,
1)
V-0, =A+0, -V,
with i =2 ||V, - Uy|| sin@Ww, , from which follows
N N m, .. . N
U, = Oy + mm, IV, — G| cog)d, , (2)

9 o_ 0 g _o (M =-my
R (i
together with the orthogonality equations

A-(0;-0,)=0 , (a_(al—ao))'(al—uo)=o'

cog0) U, + sinh) Wg) (3)

(4)
@-ﬁ)ﬁ:o,
where
- . m, . . = o o
d=2V U,) = -uU,) , D=2v,-1u,.
(cm o) n,\/_*_mu( 0 0) ( )(5)

In the interesting limiting case wherg, > m, andv, ~

Vem &V, We can anticipate that thg circumference reduces

to a point atV,,, meaning that then, body motion is prac-

tically unaltered by the collision. Theth~ D = 2(V, - U,)
and, for given magnitudes, u,, this is maximized for head-

on collisions which provides the greatest magnitude vériab
ity for the outboundi,. This is the case of planetary flyby

by satellites for attractive orbits, and it is immediateppar-
ent that scattering in the direction of the planet’s velp(it

with given initial velocities. Thug works in theS, frame

as the extra parameter needed to determine the outcome of
the collision uniquely, a role that is usually attributedtbe
‘impact parametem (the distance in reduced-mass-frame be-
tween the origin and the asymptotic line drawn from the in-
coming body, with direction this body’s asymptotic relativ
velocity). This impact parameter can only be precisely de-
fined in the reduced-mass frame, which we will assume here
to be the instantaneous body-fradigof the massn, (since

we are ultimately interested in exploring all directions tioe
fly-by about a planet of mass, > m, the satellite will be
henceforth represented by thdody of massn,).

In the S, body-frame (BF) with axes parallel to those
of the laboratory frame (LF), the relative motion of the
two masses will appear as that of a single reduced mass

u=m,m/(m, + m), at the relative position,” of m,

=277

"

rL:’ = f‘\u - f}v’ (6)
which appears to be moving under interaction forces paintin
to a fixed total mas#1 = m, + m, at the origin, where the
other massr(,) is at rest, and this can actually be computed
for sufficiently well behaved forces.

=277

Once the (BF) motionﬂ (t) is obtained, and assuming that the
frame directions are parallel to those of the laboratorgnfra
we may return to the (LF) description by noting that, in the ab
sence of external forces, the CM motion is uniform and there-
fore

P = Ry (1) - %?;’(t) =R, (0)+V .t - % P,

Fut) =R+ %?;’(t) = R0+ V ,t+ m T .
()
This is an approximation in the real case of planetary flyby be
cause of the gravitational influence of the sun, but for the du
ration of the encounter, assumed to start and end at the bound
aries of the planetary sphere of influence, the effect ottind t
body is assumed to be negligidie.

possible) has the potential for more dramatic acceleration
deceleration of the satellite. This is however limited bg th
fact that planets have large radii (eventually includinga&n
mosphere) and the satellite cannot get closer at peridpsis t
that radius. Thus some values #may be excluded as un-
practical.



FIG. 1: Collision diagram for different masseg > m,, with initial velocitiesv,, 0, and its relation with the collision diagram as seen from
theu-body (massn,) initial rest framesS,, . In this frame the circumference with diameter 2(V - 0,) is the locus of all possible outcomes
U, — U, parametrized by the scattering angleA choice of¢ determinedl, — U, and an orthogonal vectdr restricted to a circumference
of diameterD = 2(V, — 0,). The outbound velocity, — T, is geometrically defined &%+ U, — v, and lies on a circumference centered on

\7Cm — U, with radius|v, — \7c‘,m|' The angle® andy represent the- andv-scattering angles relative to the incoming velocity of @i in the
u-body initial rest frame ang’ is the scattering angle in the CM frame.

A. VIEW FROM THE V-BODY FRAME S, (REDUCED MASS of massm, obeys (see Fid.]2)
SYSTEM)

A0 =0, =0,-9,, ©

If the (BF) reference directions were rotated and scaled wit_ . . . . ~ =
S ) N which is anti-parallel to the diameter vectarsaandD of the
respect to the (LF) directions in such a way that A - 7", . S .
reference circumferences. Likewise, the asymptotic dotgo

with A € O, the rotation matrix, then we should wrifg (7) in velocity @’ for theu-body in this frame verifies

the form
R R N ., A-u; =0, =0,-V,. (10)
F(t) = Ryy(0) + Vit — % AT,

(8)  On the other hand, in the reduced-mass frafpe¢he mean
2oy B v m, o force acting on the-body during the collision is proportional
Ful® = Rem(0) + Vemt + M AT, to that body’s total linear momentum variatiap,’ in said
frame and
Viewed from the reduced-mass fran¥% attached to the- A. Aﬁ;’ =uA- (01" _ Gé’) - u (Gl — U, +V, - \71) . (1)

body of massn, with reference directions rotated throuf;h
by A-1(¢), the asymptotic incoming velociy/’ of theu-body ~ Since conservation of linear momentum in the laboratory



frame implies

% (0, — 0y) = —%AG ,
(17) is always the sum of collinear terms parallelito- d,,,
and in fact

AV =V, -V, =

(12)

A-AP, = u (AU - AV) =m, (U, - U,) = A,.  (13)

In the reduced-mass frand%, for Newtonian or Coulombian

type interactions, the asymptotic motion is known to be coni

with one focus at the orig#. In particular for strictly positive
total initial energy&” > 0 in the (BF), a gravitational colli-

sion must be an hyperbola concave to the focus at the origirk
while for repulsive Coulombian forces the hyperbola branchk

is convex. The direction akp, in the (LF) then also deter-
mines the hyperbolic axig’ for the u-body trajectory inS,,
and its angley__ with the asymptotes-i;” andd;’ is also
related to the parameter anglesee Figs.[12 and 3). Once
the anglep between the axig,’ o« AP, of the hyperbola and
a chosen laboratory fran& direction is known, the rotation

matrix A(¢) such that = A - 7" is determined as

cog¢) -—sin(@) O
A(P) =[ sin(¢) cogp) O ] (14)
0 0 1

assuming that the constant angular momentum4sL .

According to the diagrams in Fid.] 2, for a given incoming

=077

directiont,’ in the S, frame, making an angle

¢, =tant [\7O - GO] (15)

with theg, direction in the LF frame, the directiogs= ¢, +6

of the possible axig,’ o« Ap, are in the range

/8 T
¢ €[d-500+ 3] - (16)
The sign ofp — ¢, = 6 is an indication of whether the incom-
ing motion is from above or below the axis

=AP)- & . (17)

2077

Y

The anglep = ¢, corresponds to the situation whesg is
aligned witht’, i.e. a head-on collision with = 0.

es

t(¢) = (e2 — 1)y2\/¥(2tanh1 [\/gtan(g)] +

where the sign choice distinguishes attractive (+) or reipe!

4
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In the S, frame, the anglé__ from theg,” axis to the asymp-
totic direction-0; = AY(¢)- U, is ¢__ =tarr(-0.) =6
and it determines the boundaries for the actual orbit.
a repulsive interaction, the polar angle = ¢ will change
in the intervald, € [¢_. ,—¢__] while for an attractive in-
teraction¢, = n — ¢ and its domain of variation is
d,€ln-0_,2r—¢__]as indicated in Fid.13.

For

B. INITIAL CONDITIONSAND DETERMINATION OF ORBIT
PARAMETERS

nowing the asymptotic angte = = — 6 of the hyperbolic
rajectoryr,/(t) =/ (t) of the reduced mags in the v-body
frame S, determines the eccentriciyof this orbit through

the relation
(18)

The actual branch of the hyperbola that corresponds to the
motion is the one concave towards the fogysat the origin
Ofifthe interaction is attractive, otherwise it is the onecave
to the other focug,, situated along the ax& at a distance

2€?s

-1 (19)

2c=2ae=

from the hyperbolic center. Hereis the focal distance (to
the directrix) anca the semi-major axis (i.e. half the distance
between axis intercepts with the hyperbola) see[Big. 3.
Using polar coordinateg”, ¢} in the S, body frame, an hy-
perbola with axis,” aligned withA=1(¢) - e, and a focus at
the originO = 7, will be defined for all eccentricities > 1
and focal distances > 0 by the parametric equation

es

ri () = 1+ecogy+®’

(20)

wherey is a constant dependent of initial conditions. Us-
ing henceforthk = G m,m, for a gravitational interaction, or
f}r—qj| for a Coulombian interaction, the time equation can

also be expressed as a parametric functiofiofthe form of
Kepler’'s equation

K=

\/e2—1 e sin(¥)

S T1=+e cos{&)) ' (21)

(-) orbits.



FIG. 2: Asymptotic directions and axis (blue) as viewed iettbody frame. This is a-body slingshot collision where, ~ 2.6m,. Notice
the interpretation ofl, — U, as proportional ta\p,, the total momentum change of theébody in the reduced-mas$, frame, and also as the
symmetry axis of the trajectory in the non-inertiabody frame. The angléthen is identified with the asymptotic anglgs, of the trajectory

in that frame.

From the eccentricitg and the initial energy in th&, frame,
2, it is possible to obtain the focal distangand
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&y = %:uluo

the angular momentui”’

and consequently (sinc€” = pb|d.') the impact parameter

K (€-1) ksin) tan®)

-E”Z —

eult)?

S02
ultg |

2 (& -1) i tarf(0)

N
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l|2

- Y 1
[Ty |

(22)

b and the displacemeate of each focus from the origin.

b

Kl tan@)| K 1
ST we 2 >~ 1,
iU 1= iUl cog6)
e seqt
ae= Alf,zzK f().

(23)

1. THE SLINGSHOT MANOEUVRE

In Fig.[2 we have an example of a collision where the lighter
body gains kinetic energy as seen from the laboratory frame.
This is a near-maximum slingshot collision fotbody with
massm, ~ 0.3m, for given initial asymptotic conditions. This

is assuming unrestricted periapsis conditions, i.e. pmant-

cle collision. In real collisions not alt angles are accessible
in the vicinity of %lﬂo for the outgoingu-body because that
would imply a periapsis distance smaller than allowed by the
dimensions of the bodies for an elastic collision.

The slingshot manoeuvres are particular cases of the pessib
outcomes for either an attracting or repelling collisiohisl
possible to realize them in all collisions with arbitrary $sa
ratios, even though it only provides significant boosts sesa
where a small inertial mass collides with a much larger one
moving much faster. The nature of the interaction is irrele-
vant, as long as it is central and conservative. Evidently we
are not considering for the moment variations of the manoeu-
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FIG. 3: Orbital detail of the attracting and repelling opeepierian

or Coulombian orbits viewed in thebody frameS,. Theg" axis is
chosen to coincide with the reduced mass total change-ofientum

6

whered is the angle fronv, — U, to U, — U,. Then, ify,

denotes the angle froffy — U, to V,,, the relation

¢’=¢'o_0

holds fory, € [-n, n] andd € [-5, ] Then the magnitude
of U, depends solely oftandy, through the relation§ (27) to

(29)

4 L
Tnhvcm”v" — 0/l cosy, - 6)cosh). (30)
From [30) we conclude that the rangefithat provides for a

u-body velocity boost or slingshot (correspondingﬁ& u2 >
0) is bounded by boost-break angle

Oy = —tar? [cot(wo)] , (31)
which is defined through the boost condition
cogy, —60)coge) > 0. (32)

This means thatn,-boosts will happen fof [ - 7, 6, [

if ¥, < 0 (and forg € 16,, 5 1if ¥, > 0).In each case, the
remainder of th&-domain will correspond to a breakage of
theu-body and a boost to thebody velocity. From the defi-

Ap," in the collision. The asymptotic angteis the same as the one nition of 6, we conclude that fay,, = + 0 all collision results

identified in figg1 anf]2.

arem,-velocity boosts (for instance when, < m, these are
“head-on” collision with opposing velocitids | < IV | and
arbitrary impact parameter), while fgf, = + all scenarios

vre such as aero-gravity assisted slingstotdere at perigee  correspond to an,-velocity break (whem, < m, thisis a col-
the forces involved are neither conservative nor centrbe T |ision wherem, “catches-up’m, with parallel velocities and
particular value ob) that corresponds to the theoretical max- grbitrary impact parameter). Not surprisingly, when- g,

imum slingshot case is whehequals half the anglg, be-

tweenv, — 0, andV_,, which means thaii, andv, would

both come out collinear to the CM velocit,,,,. This can be
shown as follows. From one of the orthogonality conditions.

in equations[(5) written as
Ity — Ggl? =d - (T - 0p) , (24)
with

-~

d=2(Vey-1,)= m,lenL (Vo-0,),  (25)

one gets after expanding on both sides,

U2 - 20, - Uy + U2 = 2V, - (U, - Oy) - 20, - U, + 2u2.  (26)

therefore

u? = w2+ 2V, Ity — Ul cogy), (27)

wherey is the angle fromi, — T, to V.. But from the first

equation[(R)

IV, — U, ll cog6) , (28)

is perpendicular t&¢/ . we have equal domains for getting a
boost or a breakage.

The condition[(3R) above also means that(gps> 0, that

is, in any slingshot situation we find that the angldrom

U, — U, to V,,, must verifyly| < 3. SinceAp, = m, (U, —
U,), besides representing the total impulse acting onuthe
body during the maneuver, is also the direction of the force
acting on it at the periapsis, the slingshot condition cam no
be phrased as follows: if at the point of closest encounter th
force acting on thal-body has a positive component in the
direction of the CM velocity, then there will be a boost in
the finalu-body velocity. Otherwise we will obtain @body
velocity break. Notice that this formulation is valid fortho
gravity assisted and coulombian slingshots, i.e. attracs
well as repulsive interactions.

The angley, can be obtained from initial conditions in terms
of the v, to U, angleg, (see Fig.[b), in which case we can
express,, by

| @=mx,co98,) +nxé - 1] , (33)

6,,, = tan -
bb (1 + 1) x, SINGB,)

wheren = % andy, = % Notice that whem = 1 andy, = 1
theny,, = 5 for all B,, andd,;, = O, which means that in every



collision we have equa domains for boosting or breaking. But this then means that the outgoing asymptotic direction
For the more common planet-satellite case- 0 and Eqn. @, -V, coincides withV . Denoting these slingshot extremes
(33) reduces to by U3’ andv' then there is a scalarsuch that

_ csap,) . N
6, = tarr? [cot(/i’o) - %] : (34) 0 v = AV, (39)

(0]
The following figures depict three typical situations in\gta Silglce in generald, - V1l = I, — ¥l the previous equation
assisted manoeuvres. These were derived from the equations

deduced so far for the binary collisions and using diagrams o, — v, li

such as those in Figurgl(2). A live Java applet that models A= N (40)
these collisions with a variety of mass ratios and zooming cm
scales can be found if][ The first two figures correspond From the definition o/
to slingshot boosts of the lighter body,, while the last one

corresponds to a breaking manoeuvremf Figure 4-(a) rep- .

-m the following holds also in general

LoomeEmy L s
resents a slingshot boost for bodies with similar velositie hi=V1= m, (ul - ch) ' (41)
Figure[4-(b) is a “catch-up” collision where the heaviestéa _ ) ) _
body boosts the lighter body velocity as it passes by it. FigS0 in conjunction with[{40)
ure[4-(c) is a breaking collision for similar velocity bodie o — vl - m, +m, (. .
Besides the asymptotic velocities they show the actuadraj 09 V.= (Ulmax - ch) . (42)
tories near the periapsis. The color coded points represent IV el

same-time position in both orbits. Adjacent point intesvab
not correspond to equal time intervals but rather equallangu
displacements in the reduced-mass frame orbital repr@sent sl m, b, -Vl
tion. The zero index point corresponds to the periapsis. As U = [1+ e ) om- (43)
can be seen from these examples the usual rule-of-thumb for My + My IV gl

boost or break according to wether the lighter mass passes be Corresponding to this maximum, the velocity
hind or in front of the heavier one can be very tricky to apply _sh;, . Shax o . . )
when the mass ratio is not too big. Our proposed formulatioy? = U1~ ~AVen will be the minimum of possible

above in this section is however rigorous and unambiguous. Vi

and finally the maximum slingshot velocity is

I .-V N
vimln — 1 _ mu ”qu Voll ch . (44)
m, +my IVl

A. SLINGSHOT MAXIMA

On the other hand whept = 6 + 7 then \7cm points in the

For ideal point masses the unconstrained extremes are fouffpPOsite direction ofi, —V,, so instead
as usual through

W = AV (45)
1 —Uu = ,
d (Uf) = 9, U dy + 9, Uz 6 = (9, uf — 9, uF) d6 = 0, e
(35) andthen
meaning y m, I,
. . . T, o~ Vo |\y

Sin(W) cogd) — cosy) sin@) =siny —6) =0.  (36) v [1 Tmem, Vo )ch' (46)
This holds ify — 6 = nx for integern, but physically only
n = 0 andn = 1 are of interest. There are thus two extremes. sl m, I, - Il
The second variation aff defines their type depending on " [1— " o0 ]ch. (47)
whetherd?(u?) = 0. But My =My, IV gl

d?(ug) = dsin — 6) = —2 cosy — 6) d, (37)

soy — 6 = 0 corresponds to a maximum whife— 6 = n IV. . THE CONSTRAINED SLINGSHOT
corresponds to a minimum.

Thus the maximum slingshot boost for given incoming initial The preceding calculations are however only valid when the
conditions will happen whei; — U, « Ap, makes an equal periapsis distance of the hyperbolic orbit can be taken ad sm
angley = 6 with bothV . andv, — . According to[[29) this @S necessary, a situation that does not apply in most plysica
is applications. In fact, usually the intervening bodies hdive
N N mensions which prevents an elastic collision to occur if the
0. = }W _ 1 Cos-l[ch : Uo) _ (38) periapsis distance, is smaller than a limiting valug, < r,.
max 7o 2 VU, This can be for instance the radius of a planetary mass or



@ (b)

FIG. 4: Orbital detail of trajectories for: (a) an attraetiinteraction near a maximum slingshot otdody (black) of massn, colliding
elastically with a mass, ~ 3m,. (b) attractive slingshot of a-body (black) of massn, in a “catch-up” collision with a mass), ~ 2m,.
(c) breaking maneuver far-body of massn, ~ %m,. Color coded dots represent simultaneous (same coloniq@usiin the trajectory, in
equally-spaced-intervals. The closest approach corresponds to label 0.

star, plus an arbitrary offset to prevent friction from ettt can be used to express the kinetic ene¢y= %ﬂ U2=«l2a
atmospheres or stellar corona. Thus a different maximizaandrp = (e - 1) afrom which follow the identities
tion must be performed which embodies this constraint when

calculating the maximum kinetic energy boost per unit mass e=1+ " , a= Lﬁ , (50)
Ak, = %(uf — u2) that can be achieved for orbits that do not a 26 _ _
exceed the limit of maximum approach given by a specificvhere we recallk = Gmm, For an attractive orbit
Fenin- cogd ) = —lereally means cag) = 1/e(sinced__ = n—0)
. that is

We will first do this calculation in the limiting case ¥, ~
N . . ) . cm = 1 1
v, which is typical for gravity assist flyby of a small satellite cogo) = = 57 - (51)
about a planetary mass, i.e. whep < m,. 1+3 1+ f/,."

p

Recall that for an hyperbolic orbit the periapsis distaisdbeé

r—value parametrized by = 0, that is s R ) o .
Now, sinceV,,, ~ V, we obtain the following identities relat-

,o= €s 48) ing initial velocities (see Fid.15 ):
P"1+e’ . .
U, sin(y,) = u, sinig,) ,
The semi-major axia and the focal distance { UZ cos{lp(;) = vi - uoocoswo) . (52)

es -LH

Q- S whereg, denotes the incidence angle @f relative to the
’ - K#e’

(49) directionv, andy, is the angle between the directionsand

e€-1



FIG. 5: Angular relations in the caseg > m,, ch ~ V, (left) and in general (right). Recall thet, = ¢ + 6 in both cases, but, = ¢ on the
left, whiley, = a + (¥, — @) on the right.

00 = U,—V,. We can usd (52) to eliminat& = IV ,—U,land  Using Eqgn.[(5L) to eliminatéfrom Eqn. [58) we can express
¥, from Eqn. [30) and express the change in kinetic energyhe gain in kinetic energy per unit mass of the satellite imse
per unit mass of the satellite in the laboratory (heliodehtr of the approach angjg and the velocity ratiq, = u./v,,.
frame as

Ak, = 2% cog)? [1 — 12 ( cogp,) - sin(g,) tarw))] - (53)

1-x, [cos{ﬂo) - sin(ﬂo)\/(l + ’K‘,—‘,’i (x2 = 2co3By) x, + 1))2 -1

2
Ak, = 2V . i (54)
'm (1+ 42 (x2 - 2cosBy)x, + 1))
Notice that in [54) under the assumed conditighs), ~ 1 ~ Now we should write (see Figuré 5)
and«/r,u ~ Gm/r, is the potential energy per unit mass at _ _
the periapsis distance of the planet. { U, sin(@) = u, sin(3,)
. . . . U, coga) =V, — U, Co8p,), (58)
Now we will derive the general relation for the energy gain pe U2 =2 (Xg —2C08B,)x, + 1) .

unit mass in situations where the momenta of the bodies are
of similar o_rdgr in magnitude, in which casg,, is no longer  gypstitution of Eqns.[(55) t6.(b8) arld{51) into formulal (30)
collinear withv,. In this case the angular relations presentedyiyes for equal masses, = m, = m

in Fig.[H indicate that the convenient decompositionfas

2 . [vg 2
U=, —0=a+W,—a) -6, (55) Ak, = 2022 | 1% * 26 S'n(ﬁo)\/ (1458 (3205 couB,)+1)) -1
. mé B 2 :
where(y, — a) is the angle betweevi, andv,. Furthermore, (1 + /I:/rp (6 — 2x,C088,) + 1))
using the definition of/,,, the projectionV,, - v, can be _ (59)
expressed as a function gf and the ratig, = u,/v, and in the general case

1 1
VymVo COSY, — @) = uV2 (ﬁ + ﬁ% cos{ﬁo)) . (56)
and also we can get frofy x V,, that

%Wﬁﬂ%—w=%ﬁ%ﬁwJ (57)
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2 i w3 :
s 223 | m, 1 - x2 + 2y, Sing,) \/ (1+W(X572X0 cos(p’o)+1)) a
m, 2 2
i (L+ £ (43 - 21, c038,) + 1)

+

(”\/ _ mu) 1-x, (cos{ﬁo) - sin(B,) \/ (1+ﬁfﬁp(x§—2xo coswo)+l))2—1)
e

(60)

2
4 /r ()(2 2, Co%p,) + 1))

Notice that in these last formulas we have assumed that the Aky
periapsis distance is fixed g What this distance is depends V2
entirely on the particular nature of the collision type. Eor
slingshot problem of a small satellite about a plaq)emight

be a small multiple of the planet radius, but for a binary star
collision it should probably be greater than the Roche limit
avoid the inelastic effects of the gravitational tides besw

N
8
massive extended bodies.

Formulas[(54),[(59) and (60) are generalizations to amyitra 4
masses and orbital conditions of the known energy change ex-

pressions for gravitational slingshot such as those foun(ﬂ
Broucke’s papék

N

=y

o — o — —

V. APPLICATION TO GRAVITY-ASSIST MANOEUVRES ir

In the particular case of spacecraft manoeuvres assistétby
gravitational field of a planetary object we can assume that of ‘ ‘
m, > m, in the formulas above, therefore to a high accuracy -« - 0
% ~ 1 and% ~ ﬁ When approaching a large planetary Bo

massM = m, from an angle8, (measured fronv, to 0, see

Fig.[3), a satellite of mags = m, cannot engage the collision FIG. 6: Boost scenario f?zr a collision with a mas-
with an arbitrary periapsis distancg and has to maintain a sive tiny object for whichfe < 1.

minimum distance larger than a multiple of the planet’s ra-

diusR. Thus the extreme limiting periapsis distance will be

assumgd as the planet-ary radiysz R. From t.he e>.<pr-es.S|0n express this for the theoretical case of an encounter with a
for the inverse eccentrlcng = cog6) we obtain a limitation  \,3ssive object with very small radius as

on the available orbits by specifying that possible cailisi
outcomes must respect the relation 2Aku
1 6 (1+\/1 2 cos(B,) x, +Xo) X2, (64)
1+ gsllty — Y li2 (61)

N
NN

cog0h) <

or, in terms of the ratig, = V—° of satellite to planetary speeds for which we can expect the general boost pattern as in Figure
6. For solar system planets however the situation is not as
1 6. F lar system planets h the situati t
cog6) < (62) favorable, and we getinstead the scenarios shown in Figure 7
1+ 2% (1 2 cos(B) xo +)(o) below. Notice that in both cases the conditions for a bregkin
This relation limits the maximum velocity outcome at the manoeuvre are much more _I|m|ted “_‘af‘ those for the boost.
slingshot through Eqn[53, otherwise it could theoreticall For other planets the scenarios are similar to these twscase
be ' These manoeuvres are purely gravitational and do not ieclud
o the effects of powered boosts at periapsis to modify orbital
T (1 + \/1 - 2c03B,) Xo +)(02) (63) parameters and thus achieve a different orbit, or aerdyravi

assisted manoeuvres to alter the bending angle and yigketlar
if there were no limitations on the periapsis distance afldw poostst®

In terms of relative kinetic energy gain per unit mass we can
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Earth (Akyx1CF —-) i ¢
u Kg Jupiter (Akyx1 @)

Uo
Vo
Uo
Vo

Xo
&
Xo

o
TR
N

FIG. 7: Energy gain per unit mass for Earth and Jupiter gyaasisist manoeuvres for limiting-case trajectories withigpsis equal to the
planetary radius.

VI. CONCLUSIONS spacecraft with towards the Sun, as seen from that external
frame where the Sun itself is moving with velocity ~ V,

. _ the spacecraft velocity would be
We have shown that the slingshot effect is no stranger than an P y

-

other elastic collision, just a particular case of the gahset 0 =0 +V (65)
of possible outcomes where the timing of arrival at the point °e oo

of closest approach is more favorable to a boost in the velocand thus the boost term ih{43) would be

ity of the lighter mass. In the case of point particles, eiqumat

(@3) indicates that the optimal policy is a quasi-head-an fo m,  lld, =Vl NIl (66)
attractive interactions, and a head-on collision for ripg! m,+my, vl - IV ll

interactions. However, for extended bodies there is a mini-

mum distance,, of approach beyond which there is a severese unlesdit/ |l is already much greater than the speed of the
departure from elasticity (e.g. crash and burn), therefloee  solar system itself, this will in general be a small factod an
approach anglé for T, — v, must provide for sufficient ec-  the resulting speed of the spacecraft is about the sametas tha
centricity e such thata — 1)e > r.;, for attractive ones, or of the Sun itself. There is also the question of producing a
(a+1)e>ry, forrepulsive interactions. positive energy orbit for a spacecraft that is already withie
sphere of influence of the Sun without which the incoming

In the gravitational case, the Hohmann transfer o#bitsay . :
orbit would not be truly hyperbolic.

be the more energetically efficient but they are not neciéygsar
the optimum policies for approaching a slingshot configuraiNote that angular momentum has no role in these calculations
tion. Still in this case there is often the question of whethe gther than being a globally conserved constant that defirees t
there could be a solar slingshot manoeuvre. The answer islane where the collision takes place and defines the ralatio
obviously affirmative. In fact, just like any other elastie b petween the impact parameteand the parametet So it
nary collision, a slingshot around the Sun is a possibiliflew s surprising to see that many so-called didactic explanati
viewed from a frame where the Sun itself is moving. Also of the effect still mention ‘stealing angular momentum’ to a
obvious is nonetheless the fact that, just as in the case @ount for the increase in velocity of a spacecraft in a gyavit
the Jupiter gravity-assist fly-by where there is no gain & th assisted fly-by. It should also be stressed that, althougein
satellite velocity when viewed from the planetary framey an specific case of planetary fly-by the calculation of actual or
slingshot manoeuvre involving the sun would appear to retur bits involve a complei-body problem, there is no aspect of
a disappointingly unaltered final speed in the solar refegen the slingshot effect above that involve more than two-body i
frame, but this need not be the view from another frame. Howteractions. In particular no three-body effects are nedded
ever it is true that for most velocitiei% we are able to throw ynderstand the slingshot of spacecraft in the vicinity afpl
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etary massés, although the calculations for intermediate tra- to the duration of the fly-by before they can be considered as

jectories and timings for launch and arrival at the planeinvi

asymptotically infinite. For the duration of the fly-by, the-e

ity should include this for added accuracy. Tisserand’s criternal forces must be negligible as compared to the catiédio
teria and three-body graphical methods have been proposéuteraction to introduce only minor perturbations in theule

for these high-precision calculatiéis but the fact remains

ing trajectories, since it takes too long to disregard that fa

that the slingshot effect involves basically the mechanits that both the planet and the spacecraft are orbiting the Sun.

an elastic binary collision.

Having said this, mention should also be made to the limi-
tations on the presented model for the calculations of an ad’
tual planetary fly-by. The provisos made fii §oncerning the
asymptotic nature of the collision process must be pondereﬁ!1
with actual data: the times involved in the approach and ex:,
traction of a spacecraft from the fly-by should be compare

*
T
1
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Thirdly, the entry in the planet’s ‘sphere of influence’ (whi

.is often considered to be the Hill's sphere) depends on the ap
roach that is made, and that should also be factored in the
calculations. Still, as long as these factors can be showm to
troduce small perturbations to the simplified binary cailis
odel, this can be used to successfully explain the physics o
éhe effect.

Electronic addres$: amaro@fisica.ist.utl.pt

Electronic address: lemos@fisica.ist.utl.pt

R. A. Broucke. The celestial mechanics of gravity assisfnrer-
ican Institute of Aeronautics and Astronautics, edit\A/AAS
Astrodynamics Conference, Minneapolis, MN, Aug. 15-18819
number (A88-50352 21-13) in Technical Papers, pages 69-78,
August 1988.

A. Rica da Silva and J. P. S. Lemos. Geometric parametrizatio
of binary elastic collisions American Journal of Physic§4(7):
584-590, 2006.

Amaro Rica Silva. 2D Elastic Collision
Parametrization (An Interactive Java Applet).
http://centra.ist.utl.pt/ amaro/Collisions/Collisehtm|, 2005.

John J. Dykla, Robert Cacioppo, and Asim Gangopadhyayal®
Gravitational SlingshotAmerican Journal of Physi¢c§2(5):619—
621, May 2004.

Kenneth J. Epstein. Shortcut to the Slingshot Effe&tmerican
Journal of Physics73(4):362, April 2005.

J. M. Longuski and S. N. Williams. Automated design of gnavit
assist trajectories to mars and the outer plar@estial Mechan-
ics and Dynamical Astronom$$2:207-220, 1991.

Robert C.  Johnson. The  slingshot effect.
http://maths.dur.ac.uk/ dmaoOrcj/Psling/sling pdf,ukamy 2003.

G. D. Racca. New challenges to trajectory design by the use of
electric propulsion and other new means of wandering indker s
system.Celestial Mechanics and Dynamical AstronqQi@y:1-24,
January 2003.

V. V. Malyshev, V. E. Usachov, and Y. D. Tychinskii. Solar Beo
Mission with Multiple Gravity-Assist Maneuvers Realizedthv
Conversion Launcher€osmic Researct1(5):431 — 442, 2003.
C. A. Ocampo. Transfers to earth centered orbits via lurerityr
assist.Acta Astronautica52(2003):173 — 179, 2003.

W. C. Saslaw, M. J. Valtonen, and S. J. Aarseth. The graeitati
slingshot and the structure of extragalactic radio souréesro-

12

13

14

da 15

17
18

19

20
21

22

physical Journal190:253 — 270, 1974.

J. M. Longuski, E. Fischbach, and D. J. Scheeres. Deflecfion o
Spacecraft Trajectories as a New Test of General RelatRitys-
ical Review Letters36(14), April 2001.

A. V. Labunsky, O. V. Papkov, and K. G. Sukhano¥ultiple
gravity assist interplanetary trajectoriegolume 2 ofEarth Space
Institute book series on public and private sector inteiespace
TF-CRC, 1988. ISBN 90-5699090-X.

V. Barger and M. OlssonClassical Mechanics: A modern per-
spective McGraw-Hill, 1995.

H. Asada. An exact solution to determination of an open orbit
Celestial Mechanics and Dynamical Astrongn®7:151 — 164,
March 2007.

E. Barrabés, G. Gomez, and J. Rodriguez-
Canabal. Advanced topics in  astrodynamics.
http://www.ieec.fcr.es/astro04/notes/gravity. pdf, ré&dona,
July 2004.

A. E. Roy. Orbital Motion. Institute of Physics Publ., 2005.

R. Armellin, M. Lavagna, and A. Ercoli-Finzi. Aero-gravi@gsist
maneuvers: controlled dynamics modeling and optimizat@er
lestial Mechanics and Dynamical Astronon®:391 — 405, May
2006.

W. R. Johnson and J. M. Longuski. Design of Aerogravity-Assi
Trajectories. Journal of Spacecraft and Rocket39(1):23-30,
2002.

William E. Wiesel. Spaceflight DynamicdMcGraw-Hill, 1997.
James A. Van Allen. Gravitational assist in celestial meitga
tutorial. American Journal of Physi¢31(5):448—-451, May 2003.
J. K. Miller and Connie J. Weeks. Application of Tisseranztis
terion to the design of gravity assist trajectories. AIMA/AAS
Astrodynamics Specialist Conference and ExhiAlAA 2002-
4717, August 2002.


mailto:amaro@fisica.ist.utl.pt
mailto:lemos@fisica.ist.utl.pt
http://centra.ist.utl.pt/~amaro/Collisions/Collisions.html
http://maths.dur.ac.uk/~dma0rcj/Psling/sling.pdf
http://www.ieec.fcr.es/astro04/notes/gravity.pdf

