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Abstract 
 
Mechanical properties of castings, such as ultimate tensile strength, yield strength and percentage 
elongation play an important role in their operational life. This is especially true of investment 
cast parts which are used with little post-casting operations. Computer-aided prediction of the 
mechanical properties, instead of destructive testing, can save considerable time and cost, and 
also provide better insight useful for process parameter optimization. In this work, two 
computational techniques: Artificial Neural Network (ANN) and Multivariate Regression 
(MVR) have been investigated to predict the mechanical properties of investment castings. For 
this purpose, real-life data from an industrial investment casting foundry producing stainless 
steel parts was obtained. This included 24 parameters (15 process parameters related to wax 
making, shell making, shell dewaxing and metal pouring; 9 related to chemical composition of 
alloy) from about 800 heats. Then Principal Component Analysis (PCA) was employed to reduce 
redundancy in the input data. The reduced data was used as input to ANN and MVR to predict 
mechanical properties. Three extensively established training algorithms: Back Propagation 
(BP), Momentum & Adaptive (MA) and Levenberg-Marquardt (LM) were used to train the 
network using a 75% of the input data, and the remaining data was used to test the networks. The 
MVR was also employed to predict mechanical properties using the same set of input data. The 
results of three different networks as well as MVR were compared. It was observed that both 
ANN and MVR successfully predicted the mechanical properties of investment casting, though 
MVR was found to be slightly more accurate. The proposed approach is easy to implement and 
use in industrial foundries, and can significantly improve the quality of investment castings in 
terms of their mechanical properties.  
 
Keywords: Artificial Neural Network, Investment casting, Mechanical properties, Multivariate 
Regression, Principal Component Analysis. 
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1. Introduction 
 
Investment casting is widely used to produce intricate parts with high dimensional accuracy and 
surface finish, usually in difficult-to-machine alloys, for automotive, aerospace, bio-medical, 
chemical, defense and other sectors. The process involves the following key steps (Fig. 1): 
 
 Wax pattern making: Wax patterns are produced by injecting industrial wax into a die, then 

cleaned and assembled with gating system to make a tree.  
 Ceramic shell making: The tree is alternately coated with a slurry (usually a mixture of 

zircon flour and colloidal silica) of fine and coarse sand particles to obtain a ceramic shell.  
 Ceramic shell dewaxing and preheating: The shell is dried in a controlled environmental 

condition and then it is heated to melt out the wax.  
 Melting and pouring: The casting alloy is melted and poured into the preheated shell. After 

metal solidification, the shell is broken to obtain the cast part.   
 
 
 
 
 

  

(a) Wax injection (b) Pattern assembly (c) Shell making 
 

 
 

 
 

  

(d) Dewaxing (e) Preheating (f) Metal pouring 
 

Figure 1: Investment casting process 
 
 
There are more than 200 industrial investment casting foundries in India, mainly producing 
industrial valves, pumps and machinery (Dave & Tamboli, 2012). Most of these foundries are 
located in Rajkot, Coimbatore, Belgaum and Kolhapur clusters. The investment castings usually 
have higher quality conformance criteria (dimensional accuracy, internal soundness and 
mechanical properties) compared to sand cast parts. There is an increasing emphasis on 
mechanical properties, including ultimate tensile strength, yield strength and percentage 
elongation since they affect the service life of cast components. The properties are checked using 
various destructive testing methods, which are expensive and take considerable time, especially 
when carried out on all samples of all batches. Hence prediction of the mechanical properties can 
not only save inspection time, but also enable optimizing the process parameters to achieve the 
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desired quality. The mechanical properties of investment castings are primarily governed by the 
chemical composition of the alloy and process parameters related to various process steps 
mentioned above. These parameters can be recorded and used for prediction of mechanical 
properties without carrying out destructive tests. The earlier research work in this area is 
reviewed next followed by our proposed approach.  
 
 
2. Previous and Related Research Work 
 
Several researchers have explored different techniques for predicting the effect of alloy 
composition and selected process parameters on mechanical properties, mainly for sand and die 
casting. The most widely used techniques include computer simulation, artificial neural networks 
and statistical methods, briefly reviewed here.   
 
Casting simulation essentially involves modelling the physical phenomena such as flow, heat- 
transfer, solidification of metal/alloy, and phase transformation of castings in terms of governing 
equations (Ravi, 2010). These governing equations are differential in nature, and require 
numerical methods to solve and obtain the temporal (time-based) values of metal velocity as well 
as temperature. These values are used in various metallurgical models to predict the 
microstructure and mechanical properties of the castings. The accuracy of simulation is governed 
by the thermo-physical properties of cast metal and mold, as well as interface boundary 
conditions. These values are temperature dependent and are difficult to acquire for different 
metal-mold-process combinations. This essentially limits the application of simulation for 
prediction of properties. The earlier research in the area of predicting mechanical properties in 
castings using finite element method and finite difference method is summarized in table 1.  
 
A few researchers have explored the application of artificial neural network (ANN) to predict 
casting properties. ANN is essentially a data-driven approach to predict the outputs while casting 
simulation is a model-driven approach (Partheepan, et al., 2011). An ANN consists of several 
neurons and weights. The basic function of a neuron is to accept signals (values) from an input 
data, multiply it with an assumed value of weight, sum up all weighted inputs values using a 
summation function, and transfer this information to output. The computed output is compared 
with the actual output to calculate the network error. If this error is more than the acceptable 
limit (user defined), then the weights are iteratively modified. Each iteration of weight 
modification is called an epoch and entire process is referred to as training of a network. The 
values of weights for which network error is the minimum are stored, and used for prediction 
during the testing of ANN. The training of a network affects its accuracy; thus a larger amount of 
input data helps in better training and accurate prediction. Different types of training algorithms 
used by earlier researchers for prediction of mechanical properties in sand castings and die 
castings are summarized in table 2.  
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Table 1: Mechanical property prediction using computer simulation  

Researcher  

(Year) 

Numerical 

Method 
Alloy  Process 

Input 

parameters 
Output  Concluding Remarks 

Seifeddine et al. (2006)  FDM  Al  PDC  SDAS, CR  YS, EL 
Predicted results shows good agreement 

with actual results 

Guo and Samonds (2007)  FEM  Ti  IC 
Volume 

fraction 
YS  Prediction was accurate 

Seifeddine (2008)  FDM   Al 
SC, GDC 

HPDC 
SDAS, CR  YS, EL  Predicted results are comparable 

Seifeddine and Svensson 

(2010) 
FDM  Al  GDC  Iron content  TS  Prediction was accurate 

Shabani & Mazahery 

(2011) 
FEM  Al  SC  SDAS, CR 

TS, YS, 

EL 
Predicted results were accurate 

Zhou et al., (2012)  FDM  CI  SC  CR  H  Cooling rate can be employed 

Olofsson and Svensson 

(2012) 
FDM   DI  SC  microstructure  RS 

Predicted results show good agreement 

with actual results 

Schneider et al., (2012)  FDM  Al  SC  SDAS, GS  YS  Simulation can be employed for prediction 

 
Note: FDM: finite difference method; FEM: finite element method; Al: Aluminum; Ti: Titanium; CI: Cast iron; DI: Ductile iron; PDC: Pressure 
die casting; IC: Investment casting; GDC: Gravity die casting; SC: Sand casting; SDAS: Secondary dendrite arm spacing; CR: Cooling rate; GS: 
Grain Size; YS: Yield strength; EL: Elongation; TS: Tensile strength; H: Hardness; RS: Residual stress 
 
 
 

Table 2: Mechanical property prediction using ANN 

Researcher (Year) 
Training 

algorithm 
Alloy  Process  Input parameters  Output 

Concluding 

Remarks 

Calcaterra et al. 

(2000) 

SLP and 

MLP 
DI  SC 

Process parameters (cooling rate & inoculation 

temperature), 

Chemical composition 

(% C, %Si, %Mn, %S, %P, %Cu, %Sn, %Ni, %Mo, 

%Mg & %Cr) 

TS 

MLP with one 

layer gives 

best results 

Perzyk and 

Kochanksi 

(2001) 

BP  DI  SC 

Process parameters  

(spheroidisation & pouring temperature), 

Chemical Composition 

(%Al, %Ti & %Sn) 

TS,YS, EL 
ANN shows 

good results 

Dobrzanski et al. 

(2008) 
KM  Al  GDC 

Process parameter (cooling rate), 

Chemical Composition 

(%Si, %Cu, %Fe, %Mg and %Mn) 

H, 

MH,YS,EL 

ANN can 

accurately 

predict  

Dobrzanski and 

Krol (2010) 
BP   Al  GDC 

Process parameter (cooling rate), 

Chemical Composition 

(%Al, %Zn, %Mn, %Si, %Cu, %Fe and %Mg) 

H,SC,GS 

ANN is 

showing 

accurate 

results 

Emadi  

and Mahfoud 

(2011) 

‐‐  Al  SC,  GDC 

Process parameters 

(Aging temperature), 

Chemical Composition (%Si, %Na, %Sn & %Sb) 

TS,YS 

ANN is better 

than Multiple 

Regression 

Krupinski  

and Tanski 

(2012)  

BP  Mg  GDC 
Chemical Composition 

(%Al, %Zn, %Mn, %Zr) 
H,TS 

ANN can be 

employed 

 
Note: SLP: Single layer perceptron; MLP: multilayer perceptron; BP: Back propagation; KM: K mean; DI: Ductile iron; Al: Aluminum; Mg: 
Magnesium; SC: Sand casting; GDC: Gravity die casting; TS: Tensile strength; YS: Yield strength; EL: Elongation; H: Hardness; MH: Micro 
hardness; GS: Grain Size; 
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In the last few years, statistical techniques have been used for building empirical models 
correlate process parameters and mechanical properties. The relationship is established using the 
least square method that is used to fit a line through a number of observations. The relevant 
techniques include linear regression, multiple regression and curve fitting, which are very useful 
when input data is readily available. The regression analysis is however, unsuitable when the 
dataset consists of a large number of inputs and output parameters or when the relationships 
between inputs and outputs are non-linear. The previous research for prediction of mechanical 
properties of castings using empirical models through curve fitting and regression is summarized 
in table 3. 
 
A more recent technique called Multi-Variate Regression (MVR), has drawn the interest of 
researchers due to its ability to establish relationships between multiple inputs and outputs. Noori 
et al. (2009, 2010) applied MVR to predict solid waste generation and river flow. Riad et al. 
(2011) predicted the initial setting time of concrete mixer using MVR. This technique however, 
does not appear to have been explored for metal casting property prediction, so far. 
 

Table 3: Mechanical property prediction using statistical techniques  
Researcher  

(Year) 

Statistical 

technique 
Alloy  Process  Input   Output  Concluding Remarks 

Morinaga et al. (1998)  LR  Al  PDC  Orbital energy  TS, YS  Very easy to model   

Goulart et al. (2006)  CF  Al  GDC 

 SDAS, Tip growth rate, 

Heat transfer coefficient, 

solidification time 

TS, YS 
SDAS is most significant 

parameter 

Collini et al. (2008)  WR  CI  SC 
Grain lamellas Size, Eutectic 

cell size,  Inoculate content 
TS, FS 

Graphite content is most 

significant variable 

Costa et al. (2010)  MR  DI  SC 
Graphite nodules’ size, shape 

and microstructure 
FS  Predicted with good accuracy 

Pucher et al. (2011)  MR  Al  GDC  %SI, %CU, %Mg, %Mn  TS  Can be employed to predict 

Shabani 

and Mazahery (2011) 
CF  Al  SC  SDAS  TS, YS,EL 

excellent match with actual 

results 

Shinde et al. (2012)  MR  DI  SC 
Copper addition, Thickness of 

casting 
TS, YS, H 

Copper content is important 

parameter  

Dong et al. (2012)  CF  Al  GDC  SDAS, Cooling rate  TS, YS, H 
Analytical correlation can be 

used  

 
Note: LR: Linear regression; CF: Curve fitting; WR: Weibull regression; MR: Multiple regression; Al: Aluminum; CI: Cast iron; DI: Ductile 
iron; PDC: Pressure die casting; GDC: Gravity die casting; SC: Sand casting; TS: Tensile strength; YS: Yield strength; FS: Fatigue strength; EL: 
Elongation; H: Hardness 

 
Both ANN and MVR require large input data to develop the mathematical models for prediction. 
At the same time, the data should be free from redundancy to get reasonably accurate prediction. 
In this context, Principal Component Analysis (PCA) can be used for redundancy reduction 
without loss of information (Fodor, 2002). The applications of PCA in various domains have 
been reported in various technical literatures. Lorenz (1989) introduced the usefulness of PCA in 
production engineering for selection of the most suitable tap tool to cut thread on a nut. Mehrjoo 
& Bashiri, (2013) developed PCA based decision support system to plan the production in an 
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automotive industry. Ransing, et al. (2013) developed PCA based mathematical model to 
identify noise free correlations amongst data in metal casting domain. However, the application 
of PCA has not been explored for investment castings so far.  
 
This work attempts automatic prediction of mechanical properties using foundry shop floor data, 
using Artificial Neural Network and Multi-Variate Regression; Principal Component Analysis is 
employed to reduce the redundancy in input data. The relevant mathematical models are 
described next, followed by industrial data collection and mechanical property prediction. 
Finally, these models are compared in terms of their accuracy of prediction.   
 
3. Mathematical Model Development 
 
The proposed methodology is shown in figure 2. The data related to process parameters and 
chemical composition of alloy was collected and the redundancy of input data was reduced by 
PCA. After that, ANN and MVR models were used to predict mechanical properties. The 
modeling of ANN included selection of controlling parameters for network while modeling of 
MVR is about the computation of the coefficients for the empirical model. The PCA as well as 
modelling of ANN and MVR are described here.  
 
 

 
 
 
 
 
 
 
 

Figure 2: Methodology for prediction of mechanical properties in investment castings 
 

3.1 Principal Component Analysis 
 
Principal Component Analysis (PCA) reduces the redundancy in input data by determining the 
Principal Components (PCs) from a given data set and then appropriate PCs are chosen for 
further analysis. These PCs are selected in such a way that the useful information remains nearly 
unchanged. In general, the input data can be represented by a matrix (X), given by:   
 
X = n x q ………………………………………..…………………………………………...Eq.(1) 
 
where, n = observations = 1580, q = input variables = 24, giving X = 1580 x 24 in this work.   
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The matrix X can be pre-processed in two ways to derive the PCs: covariance matrix (each 
element of X is divided by the square root of each observation of n), and correlation matrix (each 
variable is divided by its norm, that is, the square root of the sum of all squared elements of each 
variable). Most of the statistical packages employ the correlation matrix to derive PCs (Abdi & 
Williams, 2010). The correlation matrix (R) is further used to compute eigen values (amount of 
variation in input data) using equation (2).  
 
|R-Iƛ| = 0 ……………………...…………………………………………………………..…Eq.(2) 
where, R = correlation matrix = 1580 x 24; I = unit matrix = 1580 x 24; ƛ = eigen value = vector 
of 1580 x 1 
 
For each eigen value ƛ, there exists a vector a such that Ra = ƛa, where a is called an eigen 
vector of R, which is associated with the eigen value ƛ. These eigen vectors are further used to 
derive PCs using equation (3):  
 
PCi = a1X1 + a2X2 + a3X3 +…….. + aiXq ……………………………………………………Eq.(3) 
 
where, X= input variables; i = specific PCs = 1 to 24; ai  = Eigen vector =  24 x 1; q = Specific 
input variable = 24 
 
In this work, 24 PCs (equal to the number of input variables, described in a later section) were 
derived using equation (3). It is important to decide the appropriate number of PCs to consider 
for further analysis that reduce redundant information in the data set. They are selected on the 
basis of Kaiser’s rule, which implies retaining the PCs whose eigen values are greater than one 
(Ransing, et al., 2013). The ten PCs were selected on the basis of Kaiser’s rule and were retained 
for further analysis.  
 
3.2 Artificial Neural Network 
 
The basic architecture of ANN is shown in figure 3. It comprises three layers including one 
hidden layer. The number of neurons in the hidden layer was kept equivalent to the number of 
retained PCs.  
 
As mentioned earlier, the training algorithm plays an important role in modelling of ANN. Three 
training algorithms including Back propagation (BP), Momentum & Adaptive (MA) and 
Levenberg-Marquardt (LM) were tested in this work. These were chosen as their learning 
capability and prediction accuracy were already established in other published technical 
literatures (Saini & Soni, 2002; Karunakar & Dutta, 2007; Saini, 2008). The basic characteristic 
of these algorithms are not discussed here for the sake of brevity.  
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Figure 3: ANN network fed by principal components 
 
Other controlling parameters included the following: the transfer function kept as a hyperbolic 
tangent sigmoid; the maximum number of epochs was restricted to 10000; the learning rate was 
set as 0.25 and the network error goal was taken as 1 x 10-5. Out of the total number of 
observations (1580), 75% were used for training, and the remaining were used for testing the 
model. The training was stopped when either of these conditions was met: the maximum number 
of epochs is reached, or the network error goal is achieved. 
 
3.3 Multi-variate Regression 
 
The MVR is also referred to as multivariate multiple regression, where multi-variate refers to the 
output variables, and multiple refers to the input variables (Noori et al., 2009). The general form 
of input matrix X and output matrix Y for modelling the present problem are given in equations 
(4) and (5).   

11 12 1

221 22

1 2

4

 
 
   
 
 
 

............................................................................................................... .( )
  

q

q

n n nq

X X X

XX X
X Eq

X X X

 

11 12 1

221 22

1 2

5

 
 
   
 
 
 

................................................................................................................... .( )
  

p

p

n n np

Y Y Y

YY Y
Y Eq

Y Y Y

 



9 
 

where, Y = casting defects; Y1 = ultimate tensile strength, Y2 = yield strength, Y3 = percentage 
elongation; p = number of output variables = 3; n = total number of observations = 1580; X = 
process parameters and chemical composition; q = number of input variables = 24. 
 
The weights (β1, β2, … , βp) were calculated from experimental data in a such way that it 
minimized the error (ε) between output (Y) and input variables (X). These coefficients were used 
to develop the empirical model, which was tested for prediction with the help of inputs using 
equation (6).   
 
Y= βX + ε ……………………………………………………………………………….... Eq.(6) 
 
The collection of industrial data for training and testing the ANN models, and the results of 
defect prediction are presented next. 
 
4. Foundry Data Collection and Property Prediction 
 
Shop floor data was collected from an investment casting foundry situated near Rajkot (India), 
which mainly produces ASTM A351 (stainless steel) alloy castings. In this work, data of about 
800 heats was acquired along with the values of process parameters as well as the chemical 
composition of the alloy (charge composition). The actual data represented 1580 observations, 
since almost two batches of shells were used for each heat. The foundry also measured the 
mechanical properties (ultimate tensile strength, yield strength and percentage elongation) for 
each batch, by casting sample test bars (figure 4) along with the castings in each batch, and 
testing each sample bar on a universal testing machine as per ASTM A370. The total data set 
comprises 24 input parameters and three output parameters. The list of input parameters and their 
range of values as well as standard deviation (SD) is given in table 4.  
 
As mentioned earlier, Principal Component Analysis was employed to reduce the complexity of 
data using correlation matrix. The eigen values were calculated using equation (2) and (3). The 
Principal Components whose eigen values were greater than one were retained, and are listed in 
table 5. Ten PCs, whose eigen values were greater than one, were retained for further analysis. 
The selected PCs explained more than 99% of total variations. The component loading, a matrix 
containing the eigen vectors of PCs was calculated (not shown here for the sake of brevity). The 
component loadings related to specific PCs were multiplied with the values of the respective 
input variables to get the scores related to corresponding PCs. All 24 variables were considered 
to calculate the score of each PC. In this way, original input variable matrix (1580 x 25) was 
reduced to PCs’ matrix (1580 x 10). This matrix was further used as input for ANN and MVR. 
The range of values of the 10 PCs considered as an input is also given in table 5, along with their 
standard deviation.  
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Figure 4: Sample test bar 
 
 

Table 4: Range of input parameters 
No.  Parameters  Notation  Minimum  Maximum  SD 

1. Time Taken for Injection (sec)  TTI 0.69  10.42  1.61 

2. Press Room Temperature (°C)  PRT 14.8  21.6  1.2 

3. Press Room Humidity (%)  PRH 56.0  90.0  8.3 

4. Viscosity of Primary Slurry (sec)  VPS 18.6  26.5  1.1 

5. pH of Primary Slurry  PHPS 9.0  9.6  0.1 

6. Primary Coating Room Temperature (°C)  PCRT 18.7  24.3  1.3 

7. Primary Coating Room Humidity (%)  PCRH 9.5  82.0  8.6 

8. Viscosity of Secondary Slurry (sec)  VSS 9.4  11.5  0.3 

9. Shell Making Process Duration (days)  PD 2.0  9.00  1.0 

10. Secondary Coating Room Temperature (°C)  SCRT 19.6  26.4  1.4 

11. Secondary Coating Room Humidity (%)  SCSH 54.5  90.0  7.5 

12. Shell Weight before Dewaxing (kg)  SWBD 5.5  11.9  1.0 

13. Shell Weight after Dewaxing (kg)  SWAD 3.9  9.1  0.8 

14. Metal Preparation Time (minutes)  MPT 22.0  317.0  18.3 

15. Tapping Temperature (°C)  TT 1548.0  1580.0  5.6 

16. Nickel‐extra (%)  NE 0.001  0.6  0.060 

17. Carbon (%)  C 0.040  0.0  0.010 

18. Manganese (%)  MN 0.560  1.4  0.080 

19. Silicon (%)  SI 1.010  1.5  0.060 

20. Sulphur (%)  S 0.001  0.010  0.010 

21. Phosphorous (%)  P 0.030  0.040  0.010 

22. Chromium (%)  CR 18.00  18.54  0.10 

23. Nickel (%)  NI 8.00  8.80  0.09 

24. Molybdenum (%)  MO 0.10  0.40  0.03 
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Out of the total 1580 observations, data corresponding to 1185 observations (75% of data) were 
used for training the ANN and MVR models. The remaining 395 observations (25% of data) 
were used for testing the models. The data is initially normalized (between -1 and 1) to avoid 
dimensionality conflict amongst input and output. The normalized data set is fed into the ANN 
and MVR for training. The output data is reconverted into the original form after testing. The 
predicted results from the models are compared with the actual results. The code for PCA, ANN 
and MVR was written and executed in MATLAB environment. 
 

Table 5: Eigen values and range of retained PCs 
 

Components 

Eigen values and their contribution Range of PCs 

Eigen 

values 
Proportion  Cumulative  Minimum  Maximum  SD 

PC1  337.783  0.580 0.580 35.78 330.31  18.37 

PC2  108.6  0.186 0.766 ‐84.27 ‐17.54  10.48 

PC3  59.2741  0.101 0.868 69.09 141.98  7.70 

PC4  35.8689  0.061 0.930 251.87 323.45  6.13 

PC5  30.3931  0.052 0.982 1522.45 1553.56  5.52 

PC6  2.93234  0.005 0.987 ‐13.26 12.08  1.77 

PC7  2.13695  0.003 0.990 42.25 63.14  1.52 

PC8  1.58196  0.002 0.993 ‐2.79 9.07  1.28 

PC9  1.23228  0.002 0.995 0.81 10.78  1.12 

PC10  1.00222  0.001 0.997 ‐7.24 0.31  1.00 

 
 
The four models, including three ANN models (BP, MA and LM) and MVR  were compared for 
their prediction capability. They were all tested on the same set of data, and the error for each 
model was calculated. Then the Root Mean Squared Error (RMSE) was calculated using 
equation (7) for all models. This signifies the performance of prediction, which is considered to 
be better if the value of RMSE is low. The values of RMSE for all models are represented in 
figure 5 (a) and (b). The performance of MVR in prediction of properties was found to be 
relatively better than ANN models.  
 

2 2 2
1 1 2 2 n n(Y y ) (Y y ) ......... (Y y )

RMSE = ...............................................................Eq(7)
n

     

 
where, y1, y2, y3 …..yn = actual values; Y1, Y2, Y3,…Yn  = predicted values 
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(a) (b) 
 
 

 

Figure 5: Prediction of UTS, YS and ELOG using ANN and MVR techniques 
 

5. Conclusion  
 
This work has successfully demonstrated the feasibility of predicting the mechanical properties 
of stainless steel investment castings using either artificial neural network or multivariate 
regression model. The large amount of shop-floor data obtained from an industrial foundry 
helped in evolving better mathematical models with improved prediction accuracy. The 
redundancy in input data was reduced by principal component analysis (using correlation 
matrix). The Root Mean Squared Error (RMSE) enabled comparing the different models. It was 
observed that MVR model yielded better results than ANN models. Among ANN models, the 
Levenberg-Marquardt training algorithm gave better results than others. The performance of 
ANNs can be further improved by tuning the transfer function, momentum rate, learning rate and 
error goal.  
 
In conclusion, both ANN and MVR techniques can be used for predicting the mechanical 
properties using industrial data related to process parameters and chemical composition of alloy. 
This approach, instead of destructive test, can save valuable cost and time. Unlike simulation 
tools, these models are easy to use by shop-floor engineers and are expected to benefit even 
small and medium foundries. We hope this work will lead to greater interest and academia-
industry collaborations in this field.  
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