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Investment casting enables producing complex shapes with good accuracy and surface finish. A key goal for
investment castings used in automobile, aerospace, chemical, biomedical and other critical applications is to
be free of internal defects and to possess mechanical properties within the desired range. At present, casting
quality is ascertained by destructive testing at the end of production cycle, leading to the possibility of
scrapping the entire batch. In this work, the mechanical properties of investment castings have been
predicted based on process parameters and chemical composition, by employing artificial neural network
(ANN) and multivariate regression (MVR). The data of related process parameters (wax making, shell
making, dewaxing, melting etc.), chemical composition of the alloy, and the resulting mechanical properties
(ultimate tensile strength, yield strength, and percentage elongation) for 800 heats were collected in an
industrial investment casting foundry. Three different ANN models: back propagation, momentum and
adaptive, and Levenberg-Marquardt, with varying number of neurons in the hidden layer (from 20 to 45 in
steps of 5) were trained using a portion of the data and tested with remaining data. A prediction penalty
index (PPI) was developed to compare the relative predictive capability of various neural network and
MVR models. It is observed that both ANN and MVR could predict the mechanical properties well, though
MVR gave slightly better results. For the ANN model, better results were produced when the number of
neurons in the hidden layer was equal or slightly higher than the number of input parameters.

Keywords artificial neural network, investment casting, mechan-
ical properties, multivariate regression, prediction
penalty index

1. Introduction

Investment casting is one of the oldest manufacturing
processes and was mainly used to create jewelry and idols
earlier. The modern investment casting plants produce intricate
parts with high dimensional accuracy and surface finish, for
automotive, aerospace, bio-medical, chemical defense, and
other sectors. Major steps and some relevant parameters in
investment casting process are illustrated in Fig. 1.

Major quality metrics of investment casting include dimen-
sional fidelity (with the designed part), internal soundness (no
shrinkage, gas porosity, or inclusion defects), and the correct
range of mechanical properties. The mechanical properties that
are of main interest include the ultimate tensile strength (UTS),
yield strength (YS), and elongation. These are becoming
increasingly important, since they affect the service life of a cast

component.Manufacturing defect-free castingswith the required
mechanical properties are, however, extremely challenging since
the properties depend on the process variables, which are difficult
to control, and therefore change from one component to another.

At present, the mechanical properties of investment castings
are checked using various destructive testing methods. This
includes measurement of tensile strength, YS, and elongation
using universal testing machine (UTM). These tests are expen-
sive and take a considerable time, especially if required to be
carried on all samples of all batches. Testing only a few samples in
a batch can lead to scrapping the entire batch if the mechanical
properties of the tested samples are found to be out of the
specified range, or passing the batch with possible defective
castings, if the samples happen to be within the specified range.

The mechanical properties are driven by the chemical compo-
sition of metal and the process parameters related to various steps
namely, wax pattern making, shell making, shell dewaxing, and
metal pouring.There is a need to predict the properties basedon the
values of the parameters involved. This will help in optimizing the
chemical composition and process parameters in advance to
achieve the desired mechanical properties, and thereby reduce the
level of rejections in the industry. Previous work in this direction is
reviewed in the following section.

2. Previous Work

Computer simulation as well as statistical techniques has
been employed to predict mechanical properties of castings.
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Casting simulation has been found to be very useful for
predicting the relative magnitude of mechanical properties in
different regions of casting, mainly driven by micro-structure.
This is in turn influenced by the relative cooling rates, which
are computed using an appropriate multi-physics mathematical
model after discretizing the part and mold geometry, inputting
the relevant temperature-dependent physical properties of the
materials, and providing the boundary conditions. These
software programs are therefore, very complex in nature, and
require a high level of domain knowledge as well as
computational skill. Their use in optimizing process parameters
to achieve the desired range of mechanical properties is at best
iterative in nature, consuming a large amount of time and effort.
The previous work in this area is summarized in Table 1.

Statistical techniques (curve fitting, simple regression, and
multiple regression) have also been employed to develop
empirical models for mechanical property prediction. Important
input includes the chemical composition, microstructure (grain
size, secondary dendrite arm spacing), design parameters
(component thickness), and process parameters (pouring tem-
perature, solidification time) of castings, which are correlated
with the values of mechanical properties mentioned earlier. The
relationships are derived using curve fitting, linear regression,
or multiple regression techniques; the least square method is
used to fit a line through a number of observations. These
techniques are, however, difficult to employ when the datasets
are complex, with a large number of input and output
parameters. The previous work in this area is summarized in
Table 2.

In the last 10 years, few researchers have explored the use of
artificial neural networks (ANN) for prediction of mechanical
properties. The ANN can be learnt from examples, and has
powerful capabilities to classify and recognize (Ref 18). It can
establish functional relationships from experimental data even
when the correlations are difficult to find or describe scientif-

ically. The application of ANN in this area is summarized in
Table 3.

Another relatively new technique called multivariate data
analysis was recently introduced in engineering applications for
prediction purposes. Noori et al. (Ref 19, 20) used MVR for
predicting solid waste generation and river flow. Riad et al. (Ref
21) applied MVR for prediction of initial setting time of the
concrete mixer in civil engineering. Applications of MVR in
the field of manufacturing, especially prediction of mechanical
properties in metal casting, do not appear to have been reported
in technical literature.

It has been clearly established that the chemical composition
and process parameters are important parameters influencing
the mechanical properties of castings (Ref 10, 12). While ANN
has been reported for predicting the mechanical properties of
sand and die castings, it does not appear to have been employed
for investment castings. The selection of appropriate training
algorithm and number of neurons in hidden layer is still a
challenging task. Another important aspect for ANN as well as
MVR is the extreme care needed in collecting the data, since it
affects the accuracy of subsequent predictions. Their applica-
tions in industrial settings, especially in metal casting domain,
need to be proven.

When exploring different techniques for mechanical prop-
erty prediction of metal castings, it is also important to know
their relative predictive capability. One of the most common
criteria for comparison of predictive capability is R square (R2),
which is mainly suitable for multiple regression (Ref 22). The
Mean Squared Error (MSE) has also been used extensively; its
major limitation is that it heavily weights the outliers (Ref 23).

Perzyk and Kochan (Ref 15) proposed prediction quality
index (PQI) to compare the results obtained from different
ANN networks. This method ranks the methods of prediction
based on the average error of the prediction (AE), standard
deviation of the error distribution (SD), and fraction of results

Fig. 1 Major steps and relevant parameters in investment casting process
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(FR) with error below 15% (FE15). The PQI can be found out
using Eq. 1

PQI ¼ 1� jAEjð Þ 1� SDð Þ 1� FE15ð Þ: ðEq 1Þ
The statistical information is collected from the predicted

results to calculate the modulus of average of error, standard
deviation, and number of observations that fall within 15% of
error. Thus, PQI can be employed to determine the relative
capability of prediction of different techniques, and has been
selected in this work to compare the results obtained from ANN
and MVR models.

3. Modeling Using ANN and MVR

In this work, different models based on ANN and Multi-
variate Regression (MVR) have been explored to predict the
mechanical properties of stainless steel investment castings.
The modeling of ANN involves selection of controlling
parameters for a network; MVR requires determining the co-
efficients for the empirical model. The relevant details are
presented here.

3.1 Artificial Neural Network (ANN)

An ANN involves adjusting the output by iterations during
the training period till the error is minimized. Hence, the
selection of appropriate training algorithms and the number of
neurons in the hidden layer are critical for modeling an ANN
for a given purpose. There is a significant amount of technical
literature about ANN modelling (Ref 14, 18, 24, 25). Several
researchers have predicted multiple outputs from multiple
inputs using ANN, showing that it is not necessary to build
three independent networks for predicting multiple outputs (Ref
26-28). Therefore single ANN architecture was built to predict
mechanical properties.

In this work, three training algorithms namely Back Prop-
agation (BP), Momentum and Adaptive (MA) learning rate, and
Levenberg-Marquardt (LM) algorithm have been employed for
prediction due to their strong learning ability (Ref 20, 29). The
basic architecture of neural network is shown in Fig. 2.

The number of layers was three, including one hidden layer.
The number of neurons in the hidden layer was varied from 20
to 45 in steps of 5. The transfer function was kept as a
hyperbolic tangent sigmoid for all variations of ANN. The
maximum number of epochs is restricted to 10,000, the learning
rate was set as 0.25, and the error goal was taken as 1910�5.
Out of the total number of observations, 75% were used for
training, and the remaining were used for testing the ANN. The
training of ANN was stopped when one of these conditions was
met: the maximum number of epochs is reached, or the error
goal is achieved.

3.2 Multivariate Regression (MVR)

MVR analysis is also referred as multivariate multiple
regression, where multivariate refers to the output variables,
and multiple refers to the input variables. MVR defers from
multiple regression analysis (MRA). While MRA enables
developing an empirical model for a single output, the MVR is
capable of multiple outputs for multiple inputs (Ref 30).

The general form of input matrix X and output matrix Y, for
modelling the present problem is given in Eq 2 and 3.T
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X ¼

X11 X12 X1q

X21

..

.

X22

..

.

X2q

..

.

Xn1 Xn2 Xnq

0
BBB@

1
CCCA; ðEq 2Þ

Y ¼

Y11 Y12 Y1p
Y21

..

.

Y22

..

.

Y2p

..

.

Yn1 Yn2 Ynp

0
BBB@

1
CCCA; ðEq 3Þ

where Y the mechanical properties; Y1 the tensile strength, Y2
the yield strength, and Y3 the elongation; p the number of
output variables = 3 (in this case); n the total number of
observations; X the process parameters and chemical compo-
sition; q the number of input variables = 25 (in this case).

The co-efficients (b1, b2, …, bp) were calculated from
experimental data in a such way that it minimized the error (e)
between output (Y) and input variables (X). These co-efficients
were used to develop the empirical model, which was tested for
prediction with the help of inputs using Eq 4.

Y ¼ bX þ e: ðEq 4Þ
The detailed inputs and results are presented next.

4. Data Collection and Property Prediction

Shop floor data were collected from an investment casting
foundry situated near Rajkot (India), which supplies cast
components to automobile, chemical, and aerospace industries.
The main alloy is ASTM A351 (stainless steel). In this work,
data of about 800 heats were acquired along with the values of
process parameters related to wax making, shell making,
dewaxing, and pouring, as well as the chemical composition of

the alloy (charge composition). The actual data represented
1580 observations, since two batches of shells were used for
each heat. The foundry measured the mechanical properties
(UTS, YS, and percentage elongation) for each batch, by
casting sample bars along with the castings in each batch, and
testing each sample bar on an UTM as per ASTM A370 (Ref
31) (Fig. 3). The total dataset comprises 25 input parameters
and three output parameters. Their range of values of input
parameters is given in Table 4, along with the average and
standard deviation of each one.

Out of the 1580 observations, data corresponding to 1185
observations (75% of data) were used for training the ANN and
MVR models. The remaining 395 observations (25% of data)
were used for testing the models. The data is initially
normalized (between �1 and 1) using Eq 5 to avoid dimen-
sionality conflict amongst input and output. The normalized
dataset is fed into the ANN and MVR for training. The output
data are reconverted into the original form after testing. The
predicted results from the models are compared with the actual
results. The code for ANN and MVR was written and executed
in MATLAB environment.

Xn ¼ 2� ðX � Xmin:Þ
ðXmax: � Xmin:Þ

� �
� 1; ðEq 5Þ

where Xmax. and Xmin. are the maximum and minimum values
of a particular input variable X in the dataset; Xn is the nor-
malized value of parameter X.

5. Comparative Evaluation of ANN and MVR
Models

A total of 19 models were developed and compared for their
prediction ability. This included three different types of ANN
(BP, MA, and LM), which were varied in terms of the number
of neurons in the hidden layer: six variations (20-45 neurons in
steps of 5), giving a total of 18 models. Results of one ANN
model (BP with 25 neurons in the hidden layer) shown in
Fig. 4; others are not shown here for paucity of space. The
MVR model was also developed and tested on the same set of
data (as for the ANN), and its results are shown in Fig. 5.

The error for each model was calculated from the predicted
and actual results, and the AE was determined. The standard
deviation of the error and the number of observations falling
within it were estimated to calculate the performance quality
index (PQI). These results are given in Table 5, where rError

indicates standard deviation of error, Nr is the number of
predicted results that are within the standard deviation of error.
The FR is the ratio of Nr to the total number of observations,
and is represented in percentage. If a large number of predicted
results fall within the range of rError, then the prediction is
considered to be acceptable. For prediction of elongation, the
maximum value of FR was found to be 65%, and rError is very
low. In the case of ANN model, it was observed that the
number of results falling within rError is more when the number
of neurons in the hidden layer is equal or more than the number
of inputs. The MVR model also produced a large number of
results within standard deviation of rError. The above observa-
tions are supported by the PQI calculated using Eq 1.

A new metric called prediction penalty index (PPI) is
proposed here for comparing the accuracy of ANNs and MVR

Fig. 2 Architecture of Neural Network
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models. This was inspired from the practical application of true
Bayesian estimate (used in movie rating). The PPI is calculated
using Eq 6, and compared with PQI.

PPI ¼ ðNrÞ � ðjAEjÞ
ðNr þ NminÞ þ ðNminÞ � ðjMedianjÞ

ðNr þ NminÞ ; ðEq 6Þ

where Nr the number of observations falling within the stan-
dard deviation of error, |AE| the positive value of the average

error, |Median| the positive value of the median error, and
Nmin minimum number of observations assumed to be within
standard deviation of error (�40).

The |AE| and |median| were calculated from the predicted
results for MVR, and shown in Table 6. The value of Nmin was
taken as 40 (about 10% of 395 tested results), while Nr was
taken from Table 5. The PQI and PPI were calculated using
Eq 1 and 6, and shown in Table 7. The accuracy of prediction
is considered to be acceptable if the value of PQI and PPI is
low.

The metric of PQI and PPI was scaled (between 0 and 1)
using Eq 7 for all models, and represented in Fig. 6, 7, and 8.
The three ANN models (BP, MA, and LM) and their variations
(number of neurons in the hidden layer) are indicated on the
horizontal axis while the normalized prediction scale is shown
on the vertical axis. A model is considered acceptable in terms
of prediction ability when the value of Sn is close to 1. The
values of Sn for MVR are equal to one in all cases; showing that
MVR is the most accurate model for prediction of mechanical
properties.

Sn ¼ 1� 2� ðIn � Imin:Þ
ðImax: � Imin:Þ

� �
; ðEq 7Þ

where Sn the prediction scale of model, In the value of PQI
(or PPI), Imax. the maximum value from PQI (or PPI) for
UTS, YS, or elongation, Imin. the minimum value from PQI
(or PPI) for UTS, YS, or Elongation.

6. Discussion and Conclusion

This work showed that it is possible to predict the
mechanical properties of stainless steel investment castings
used in automotive industries using an appropriate ANN or

Table 4 Range of input parameters

No. Parameters Minimum Maximum Average SD

1 Time taken for injection (s) 0.69 10.42 8.92 1.61
2 Press room temperature (�C) 14.85 21.67 18.86 1.27
3 Press room humidity (%) 56.00 90.00 72.22 8.38
4 Viscosity—primary slurry (s) 18.63 26.59 21.62 1.15
5 pH—primary slurry 9.00 9.65 9.40 0.14
6 Temperature of primary coating room (�C) 18.75 24.33 21.26 1.30
7 Humidity of primary coating room (%) 9.50 82.00 71.65 8.63
8 Viscosity—secondary slurry (s) 9.43 11.50 10.51 0.31
9 pH—secondary slurry 9.25 9.50 9.50 0.02
10 Process duration (days) 2.00 9.00 4.32 1.01
11 Temperature of secondary coating room (�C) 19.67 26.44 23.20 1.46
12 Humidity of secondary coating room (%) 54.50 90.00 73.40 7.53
13 Shell weight before dewaxing (kg) 5.55 11.90 6.67 1.02
14 Shell weight after dewaxing (kg) 3.93 9.16 5.15 0.83
15 Metal preparation (min) 22.00 317.00 74.21 18.35
16 Tapping temperature (�C) 1548.00 1580.00 1559.96 5.61
17 Nickel-extra (%) 0.00 0.69 0.09 0.06
18 Carbon (%) 0.04 0.08 0.05 0.01
19 Manganese (%) 0.56 1.43 0.96 0.08
20 Silicon (%) 1.01 1.51 1.25 0.06
21 Sulphur (%) 0.00 0.03 0.01 0.01
22 Phosphorous (%) 0.03 0.04 0.04 0.01
23 Chromium (%) 18.00 18.54 18.25 0.10
24 Nickel (%) 8.00 8.85 8.17 0.09
25 Molybdenum (%) 0.11 0.42 0.24 0.03

Fig. 3 Tensile bar and test specimen as per ASTM A370 guide-
lines
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MVR model. Nineteen different models, including three
training algorithms of ANN with different number of neurons
in the hidden layer, and one MVR model were employed. It
was observed that both ANN and MVR can be employed for
the above purpose, though MVR gave better results than any
ANN model. The ANN gave better results when the number of
neurons in the hidden layer was equal or slightly more than the
number of input parameters. The performance quality index
proved to be useful for comparing the relative capability of
ANNs and MVR in the above predictions. The prediction
performance index, proposed in this work based on true
Bayesian estimate, was found to be a better metric for

comparison, since it is linear in nature and minimizes the
inaccuracies that may be caused in the estimation of AE and
standard deviation. The performance of ANNs can be further
improved by tuning the transfer function, momentum rate,
learning rate, or error goal. The number of input parameters can
be reduced using Principal Component Analysis (PCA) or
Factor Analysis (FA) to reduce computation complexity along
with a possibility of better prediction ability.

In summary, ANN and MVR models are useful for
predicting the mechanical properties of investment castings
and thereby avoid expensive and time-consuming destructive
tests used at present. These models can be used easily on the

Fig. 5 Comparison of predicted and actual results from MVR

Fig. 4 Comparison of predicted and actual results from ANN: BP25
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Table 5 Comparison of accuracy of different models

Prediction method

UTS, MPa YS, MPa Elongation (%)

rError Nr FR (%) rError Nr FR (%) rError Nr FR (%)

MVR 17.54 149 38 11.48 138 35 3.1 256.0 65
ANN with BP
20 23.62 16 4 23.54 116 29 3.6 5.0 1
25 25.71 76 19 12.57 143 36 3.8 223.0 56
30 22.45 200 51 21.67 100 25 5.0 160.0 41
35 32.12 0 0 26.13 42 11 3.2 0.0 0
40 30.44 24 6 28.24 0 0 4.5 21.0 5
45 44.4 0 0 33 32 8 6.2 105.0 27

ANN with MA
20 23.29 27 7 21.36 73 18 3.6 1.0 0
25 23.64 166 42 36.6 130 33 3.5 97.0 25
30 29.06 140 35 13.83 134 34 6.7 123.0 31
35 31.26 0 0 27.26 5 1 3.2 0.0 0
40 33.51 13 3 34 1 0 3.5 0.0 0
45 52.33 2 1 24.89 37 9 6.7 71.0 18

ANN with LM
20 39.19 77 19 27.34 60 15 5.4 39.0 10
25 42.32 178 45 35.38 104 26 8.7 40.0 10
30 34.28 203 51 31.86 92 23 10.1 62.0 16
35 35.3 99 25 33.66 104 26 13.5 6.0 2
40 140.79 0 0 22.94 0 0 8.7 2.0 1
45 34.12 54 14 24.28 18 5 4.9 48.0 12

Table 6 Nr, AE, median and Nmin values for prediction using MVR

Method Total number of observations

UTS YS Elong.

AE Median Nmin AE Median Nmin AE Median Nmin

MVR 395 18.18 21.16 40 9.26 12.6 40 0.25 0.04 40

Table 7 PQI and PPI for comparison of ANN and MVR models

Approach of prediction

UTS YS
Percentage elongation

(Elong.)

PQI PPI PQI PPI PQI PPI

MVR 29 3 27 1 �1 0
ANN with BP
20 1131 55 170 12 28 12
25 965 44 163 10 0 1
30 963 42 390 20 4 3
35 3800 124 859 39 38 18
40 33 47 994 74 33 12
45 6721 158 881 49 16 5

ANN with MA
20 1082 57 437 27 38 16
25 386 22 56 10 11 5
30 177 19 29 2 9 3
35 7443 178 973 76 38 18
40 1402 66 401 17 37 15
45 5334 145 1002 50 17 6

ANN with LM
20 1152 38 619 31 25 7
25 31 4 224 10 21 3
30 563 24 1806 69 66 11
35 186 13 253 12 73 13
40 39,686 336 1838 82 111 17
45 1068 40 381 23 19 7
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Fig. 6 Comparative evaluation of ANN and MVR models—UTS

Fig. 7 Comparative evaluation of ANN and MVR models—YS
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shop-floor and do not need high level of computation tools or
knowledge characteristic of simulation programs.
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